OVERLAPPING ADDITIVE SCHWARZ PRECONDITIONERS
FOR ELLIPTIC PDES ON THE UNIT SPHERE

Q. T. LE GIA, I. H. SLOAN, AND T. TRAN

Abstract. We present an overlapping domain decomposition technique for solving a class of elliptic partial differential equations on the sphere. The approximate solution is constructed using shifts of a strictly positive definite kernel on the sphere. The condition number of the Schwarz operator does not depend on the scattered data set, but rather depends on the way we decompose the scattered set into smaller subsets. The method is illustrated by numerical experiments on relatively large scattered point sets taken from MAGSAT satellite data (see [9]).

1. Introduction

Partial differential equations on the sphere have many applications, for example in weather forecasting models, geology and meteorology. In this paper we consider a class of elliptic partial differential equations on the unit sphere of the form

\[-\Delta^* u + \omega^2 u = f,\]

where \(\Delta^*\) is the Laplace-Beltrami operator and \(\omega\) is some non-zero real constant. This type of elliptic equation arises, for example, when one discretizes in time the diffusion equation on the sphere.

When solving elliptic PDEs on the unit sphere based on scattered measured data, with the approximate solution constructed using shifts of a strictly positive definite kernel on the sphere, a very ill-conditioned linear system results, whether a Galerkin method [7] or a collocation method [12] is used. This is due to the separation radius of the scattered data [10], which can be very small for a large set of scattered data.

In this paper, we propose a way of partitioning a given scattered data set into smaller subsets. This method of partitioning is based on the property that data sites along the track of satellite form a sequence of discrete points, see Figure 1, and this sequence covers the globe (except for two small polar caps, in this case of radius about 0.1 radian) over a period of time. This happens because the Earth is rotating around its own axis, while the satellite traverses from near the North pole to near the South pole then back to the North pole in an elliptical path.

Based on those overlapping subsets of scattered data, we define an additive Schwarz operator for solving a class of elliptic partial differential equations on the sphere. We then prove a theorem which shows the condition number of the Schwarz operator is independent of the scattered data set. The method is illustrated by

\begin{itemize}
\item \textbf{Date:} December 15, 2006.
\item \textbf{2000 Mathematics Subject Classification.} Primary 33F05, 65N55; Secondary 65N30.
\item \textbf{Key words and phrases.} sphere, spherical basis functions, domain decomposition, elliptic partial differential equations.
\end{itemize}
numerical experiments on relatively large scattered point sets taken from MAGSAT satellite data (see [9]).

It is noted that for the interpolation problem in \mathbb{R}^n using radial basis functions, the idea of dividing the scattered data set into smaller subsets for the purpose of defining the Schwarz alternating algorithm has been proposed in [1]. However, in that paper it is proved only that the Schwarz alternating method is a contraction. Moreover, the method is not used there as a preconditioner, and the problem to which it is applied, namely interpolation with thin plate splines in \mathbb{R}^n, is different from that studied here.

Work on applying multiplicative Schwarz alternating algorithm using spherical splines has also been carried out in [4], but in that work the data points are not scattered, and again the Schwarz method is not used as a preconditioner.

The structure of the paper is the following: in Section 2 we will review spherical harmonics and Sobolev spaces on the unit sphere. Then, in Section 3, the elliptic partial differential equation is presented. The abstract framework for the additive Schwarz preconditioner is reviewed in Section 4. In Section 5, we present the main theoretical results of the paper. The final two sections describe the algorithm and present numerical results based on real scattered data. In the paper, generic constants are denoted by c, c_1, c_2, c_3, \ldots.

2. Preliminaries

In this section, we will review spherical harmonics, function spaces on the unit Euclidean sphere $S^n \subset \mathbb{R}^{n+1}$, and spherical basis functions.

2.1. Spherical harmonics. Spherical harmonics are the restriction of homogeneous harmonic polynomials in \mathbb{R}^{n+1} to the unit sphere S^n. We denote an orthonormal (with respect to the $L^2(S^n)$ inner product) basis for the spherical harmonics of degree ℓ by

$$\{Y_{\ell,k} : k = 1, \ldots, N(n, \ell)\}, \quad \ell = 0, 1, \ldots,$$

where $N(n, \ell)$ is the dimension of the space of all spherical harmonics of degree ℓ; the values of $N(n, \ell)$ are (see [13]):

$$N(n, 0) = 1 \quad \text{and} \quad N(n, \ell) = \frac{(2\ell + n - 1)\Gamma(\ell + n - 1)}{\Gamma(\ell + 1)\Gamma(n)} \quad \text{for} \quad \ell \geq 1.$$

The asymptotic behaviour of $N(n, \ell)$ for fixed n and increasing ℓ is $O(\ell^{n-1})$. The spherical harmonics $\{Y_{\ell,k} : \ell = 0, 1, \ldots; k = 1, \ldots, N(n, \ell)\}$ form a complete orthonormal basis for $L^2(S^n)$. Correspondingly, for a given function $f \in L^2(S^n)$, we define its Fourier coefficients by

$$\hat{f}_{\ell,k} = \int_{S^n} f(x)Y_{\ell,k}(x)dS(x),$$

where dS is the surface measure of the sphere S^n, and represent f as a Fourier series,

$$f = \sum_{\ell=0}^{\infty} \sum_{k=1}^{N(n,\ell)} \hat{f}_{\ell,k} Y_{\ell,k},$$

in which the equal sign is understood in the $L^2(S^n)$ sense.
Spherical harmonics of degree \(\ell \) are eigenfunctions of the Laplace-Beltrami operator \(\Delta^* \) on \(S^n \), with eigenvalues \(-\lambda_\ell \), with
\[
\lambda_\ell = \ell(\ell + n - 1),
\]
i.e.,
\[
\Delta^* Y_{\ell,k} = -\lambda_\ell Y_{\ell,k}.
\]
The addition formula for spherical harmonics of the same degree \(\ell \) (see \cite{13}) is
\[
(2) \quad \sum_{k=0}^{N(n,\ell)} Y_{\ell,k}(x) Y_{\ell,k}(y) = \frac{1}{\omega_n} N(n,\ell) P_\ell(n+1; x \cdot y),
\]
where \(P_\ell(n+1; t) \) is the normalized Legendre polynomial of degree \(\ell \) in \(\mathbb{R}^{n+1} \) and \(\omega_n \) is the surface area of the unit sphere \(S^n \). Recall from \cite{13} that \(P_1(n+1; 1) = 1 \) and
\[
(3) \quad \int_{-1}^{+1} P_{\ell}(n+1; t) P_{k}(n+1; t)(1-t^2)^{(n-2)/2}dt = \frac{\omega_n}{\omega_{n-1}} N(n,\ell) \delta_{\ell,k},
\]
where \(\omega_{n-1} \) is the surface area of the sphere \(S^{n-1} \), and \(\delta_{\ell,k} \) is the Kronecker delta.

For a given \(s \geq 0 \), the Sobolev space \(H^s(S^n) \) on the unit sphere is defined in terms of the eigenvalues of the Laplace-Beltrami operator (see \cite{11}),
\[
(4) \quad H^s(S^n) := \left\{ f \in L^2(S^n) : \sum_{\ell=0}^{\infty} \sum_{k=1}^{N(n,\ell)} (1 + \lambda_\ell)^s |\widehat{f}_{\ell,k}|^2 < \infty \right\}.
\]
The norm of a function \(f \) in this space is defined to be
\[
\|f\|_{H^s(S^n)} = \left(\sum_{\ell=0}^{\infty} \sum_{k=1}^{N(n,\ell)} (1 + \lambda_\ell)^s |\widehat{f}_{\ell,k}|^2 \right)^{1/2}.
\]

2.2. Sobolev spaces on the sphere through a specific atlas. Sobolev spaces on \(S^n \) can also be defined using local charts (see \cite{11}). Here we use a specific atlas of charts, as in \cite{5}.

Let a spherical cap of radius \(\alpha \) centered at \(p \in S^n \) be defined as
\[
(5) \quad C(p, \alpha) := \{ x \in S^n : \theta(p, x) \leq \alpha \},
\]
where \(\theta(p, x) = \cos^{-1}(p \cdot x) \) is the geodesic distance between two points \(x, p \in S^n \). The interior of \(C(p, \alpha) \) is denoted by \(C^o(p, \alpha) \). Let \(\hat{n} \) and \(\hat{s} \) denote the north and south poles of \(S^n \), respectively. Then a simple cover for the sphere is provided by
\[
(6) \quad U_1 = C^o(\hat{n}, \theta_0) \quad \text{and} \quad U_2 = C^o(\hat{s}, \theta_0), \quad \text{where} \; \theta_0 \in (\pi/2, 2\pi /3).
\]
The stereographic projection \(\sigma_\hat{n} \) of the punctured sphere \(S^n \setminus \{ \hat{n} \} \) onto \(\mathbb{R}^n \) is defined as a mapping that maps \(x \in S^n \setminus \{ \hat{n} \} \) to the intersection of the equatorial hyperplane \(\{ z = 0 \} \) and the extended line that passes through \(x \) and \(\hat{n} \). The stereographic projection \(\sigma_\hat{s} \) based on \(\hat{s} \) can be defined analogously. We set
\[
(7) \quad \psi_1 = \frac{1}{\tan(\theta_0 /2)} \sigma_\hat{n}|_{U_1} \quad \text{and} \quad \psi_2 = \frac{1}{\tan(\theta_0 /2)} \sigma_\hat{s}|_{U_2},
\]
so that \(\psi_k, k = 1, 2 \), maps \(U_k \) onto \(B(0, 1) \), the unit ball in \(\mathbb{R}^n \). We conclude that \(\mathcal{A} = \{ U_k, \psi_k \}_{k=1}^2 \) is a \(C^\infty \) atlas of covering coordinate charts for the sphere. It is known (see \cite{17}) that the stereographic coordinate charts \(\{ \psi_k \}_{k=1}^2 \) as defined in (7) map spherical caps to Euclidean balls, but in general concentric spherical caps are
not mapped to concentric Euclidean balls. The projection ψ_k, for $k = 1, 2$, does not distort too much the geodesic distance between two points $x, y \in S^n$, as shown in \cite{8}.

With the atlas so defined, we define the map π_k which takes a real-valued function g with compact support in U_k into a real-valued function on \mathbb{R}^n by

$$
\pi_k(g)(x) = \begin{cases}
g \circ \psi_k^{-1}(x), & \text{if } x \in B(0, 1), \\
0, & \text{otherwise}.
\end{cases}
$$

Let $\{\chi_k : S^n \to \mathbb{R}\}_{k=1}^2$ be a partition of unity subordinated to the atlas, i.e., a pair of non-negative infinitely differentiable functions χ_k on S^n with compact support in U_k, such that $\sum_k \chi_k = 1$. For any function $f : S^n \to \mathbb{R}$, we can use the partition of unity to write

$$
f = \sum_{k=1}^2 (\chi_k f), \quad \text{where } (\chi_k f)(p) = \chi_k(p) f(p), \quad p \in S^n.
$$

The Sobolev space $H^1(S^n)$ is defined to be the set

$$
\{ f \in L^2(S^n) : \pi_k(\chi_k f) \in H^1(\mathbb{R}^n) \quad \text{for } k = 1, 2 \},
$$

which is equipped with the norm

$$
\|f\|_{H^1(S^n)} = \left(\sum_{k=1}^2 \|\pi_k(\chi_k f)\|_{H^1(\mathbb{R}^n)}^2 \right)^{1/2}.
$$

This $H^1(S^n)$ norm is equivalent to the $H^1(S^n)$ norm given in Section 2.1 (see \cite{11}).

2.3. Spherical basis functions. In this section, we will review necessary background on positive definite kernels on the unit sphere and spherical basis functions.

A real-valued kernel Φ in $C(S^n \times S^n)$ is termed positive definite on S^n if $\Phi(x, y) = \Phi(y, x)$ and if for every finite set of distinct points $X = \{x_1, \ldots, x_N\}$ on S^n, the symmetric $N \times N$ matrix A with entries $A_{i,j} = \Phi(x_i, x_j)$ is positive semi-definite. If the matrix A is positive definite then Φ is called a strictly positive definite kernel (see \cite{18, 25}).

Let ϕ be a univariate function defined on $[-1, 1]$ which can be expanded in terms of Legendre polynomials as

$$
\phi(t) = \sum_{\ell=0}^{\infty} N(n, \ell) \hat{\phi}(\ell) P_{\ell}(n+1; t),
$$

where

$$
\hat{\phi}(\ell) = \omega_n \int_{-1}^{+1} \phi(t) P_{\ell}(n+1; t)(1 - t^2)^{n-2}/2 \, dt.
$$

Due to the addition formula (2), a kernel Φ defined by

$$
\Phi(x, y) = \phi(x \cdot y)
$$

can be represented as

$$
\Phi(x, y) = \sum_{\ell=0}^{\infty} \sum_{k=1}^{N(n, \ell)} \hat{\phi}(\ell) Y_{\ell,k}(x) Y_{\ell,k}(y).
$$

In \cite{3}, a complete characterization of strictly positive definite kernels is established: the kernel Φ is strictly positive definite if and only if $\hat{\phi}(\ell) \geq 0$ for all $\ell \geq 0$ and
\(\hat{\phi}(\ell) > 0 \) for infinitely many even values of \(\ell \) and infinitely many odd values of \(\ell \); see also [18] and [25].

The native space \(\mathcal{N}_\Phi \) associated with the kernel \(\Phi \) is defined as

\[
\mathcal{N}_\Phi := \left\{ f \in L^2(S^n) : \sum_{\ell=0}^{\infty} \sum_{k=1}^{N(n,\ell)} \left| \hat{f}_{\ell,k} \right|^2 < \infty \right\}
\]

If

\[
c_1(1 + \lambda \ell)^{-s} \leq \hat{\phi}(\ell) \leq c_2(1 + \lambda \ell)^{-s},
\]

where \(c_1, c_2 > 0 \) are some constants and \(s > n/2 \), the native space \(\mathcal{N}_\Phi \) can be identified with the Sobolev space \(H^s(S^n) \) defined in (4). Henceforth, the condition (14) is shortened to \(\hat{\phi}(\ell) \sim (1 + \lambda \ell)^{-s} \).

In the following we define a positive definite kernel \(\Phi \) from a univariate function \(\phi \) satisfying (14) by using Wendland’s compactly supported radial basis functions [21]. For any non-negative integer \(j \), let

\[
\rho_j(r) = \begin{cases}
(1 - r)^j, & 0 < r \leq 1, \\
0, & r > 1,
\end{cases}
\]

and let

\[
I_{\rho_j}(r) = \int_r^\infty s \rho_j(s) ds, \quad r \geq 0.
\]

We define, for any non-negative integer \(m \),

\[
\rho_{n+1,m}(r) = I_m \rho_{m+1,\left\lfloor \frac{n+1}{2} \right\rfloor +1}(r).
\]

The radial basis function \(\Psi_{n+1,m} \) is defined in \(\mathbb{R}^{n+1} \) as

\[
\Psi_{n+1,m}(x) = \rho_{n+1,m}(\|x\|),
\]

where \(\| \cdot \| \) denotes the Euclidean norm in \(\mathbb{R}^{n+1} \). It is shown in [22, Corollary 2.3] that \(\Psi_{n+1,m} \in C^{2m}(\mathbb{R}^{n+1}) \). For any given \(N \) and any set of \(N \) pairwise distinct points \(\{x_1, \ldots, x_N\} \) in \(\mathbb{R}^{n+1} \), the matrix

\[
[\Psi_{n+1,m}(x_i - x_j)]_{i,j=1}^N
\]

is positive definite; see [23, Theorem 9.13]. Since \(\|x - y\| = \sqrt{2 - 2x \cdot y} \) for any \(x, y \in S^n \), the kernel \(\Phi \) defined by (11) with

\[
\Phi(x, y) = \Psi_{n+1,m}(\sqrt{2 - 2x \cdot y}), \quad x, y \in S^n.
\]

Since the matrix (15) is positive definite, \(\Phi \) is a strictly positive definite kernel on the sphere \(S^n \). Moreover, the asymptotic behaviour of the Fourier coefficients \(\hat{\phi}(\ell) \) is, see [14, Proposition 4.6],

\[
\hat{\phi}(\ell) = O(\ell^{-2m-n-1}).
\]

Using (1), we deduce that \(\phi \) satisfies (14) with

\[
s = m + (n+1)/2.
\]
With this kernel Φ, we can now establish a set of spherical basis functions (SBFs) \(\{ \Phi_1, \ldots, \Phi_N \} \) associated with a set \(X = \{ x_1, \ldots, x_N \} \) of scattered and distinct points on \(S^n \), where
\[
\Phi_i(x) := \Phi(x_i, x).
\]
The finite dimensional space spanned by these SBFs is denoted by \(V_X \):
\[
V_X := \text{span} \{ \Phi_i : i = 1, \ldots, N \}.
\]
We note that the SBFs \(\Phi_i, i = 1, \ldots, N \), depend only on the geodesic distance between the points \(x \) and \(x_i \). The set \(X \) is characterized by its mesh norm \(h_X \) and separation radius \(q_X \) defined as
\[
h_X := \sup_{y \in S^n} \min_{x_i \in X} \theta(x_i, y), \quad \text{and} \quad q_X := \frac{1}{2} \min_{i \neq j} \theta(x_i, x_j).
\]
The kernel Φ being strictly positive definite, the interpolation problem in \(V_X \) of scattered points using spherical basis functions is always solvable. Given a function \(f \) whose values \(f(x_j) \) for \(j = 1, \ldots, N \) are known, the interpolant \(I_X f \) of \(f \) is defined as a linear combination of the SBFs which satisfies \((I_X f)(x_j) = f(x_j) \) for all \(j = 1, \ldots, N \). It is observed in [10] that the matrix \(A \) with entries \(A_{i,j} = \Phi_i(x_j) \) arising from this interpolation problem is ill-conditioned. More fully, it is shown there that the least eigenvalue of the matrix \(A \) depends on the separation radius \(q_X \) of the set \(X \), which can be very small for a large set of scattered data, and also on the smoothness of the kernel Φ. (The smoother the kernel the smaller the least eigenvalue of \(A \).)

3. The Elliptic Partial Differential Equation on Spheres

We consider the following elliptic partial differential equation on the unit sphere:
\[
-\Delta^* u + \omega^2 u = f,
\]
where \(f \) is some given function and \(\omega \neq 0 \) is a real constant. This type of elliptic partial differential equations arises when one discretizes in time the heat equation on the surface of the sphere. To set up a weak formulation, we introduce the bilinear form
\[
a(u, v) := \sum_{\ell=0}^{\infty} \sum_{k=1}^{N(n, \ell)} (\lambda_\ell + \omega^2) \hat{u}_{\ell,k} \hat{v}_{\ell,k}.
\]
A natural weak formulation of the elliptic PDE is
\[
a(u, v) = \langle f, v \rangle \quad \forall v \in H^1(S^n),
\]
where \(\langle u, v \rangle = \int_{S^n} u v dS \). The bilinear form is bounded and coercive by the following lemma.

Lemma 3.1. For \(u, v \in H^1(S^n) \), there are positive constants \(A_0 \leq 1 \) and \(A_1 \geq 1 \) such that
\[
a(u, v) \leq A_1 \| u \|_{H^1(S^n)} \| v \|_{H^1(S^n)} \quad \text{and} \quad a(u, u) \geq A_0 \| u \|_{H^1(S^n)}^2.
\]
Proof. In terms of Fourier series, we have
\[
a(u, v) = \sum_{\ell=0}^{\infty} \sum_{k=1}^{N(n, \ell)} (\lambda_\ell + \omega^2) \hat{u}_{\ell, k} \hat{v}_{\ell, k}
\]
\[
\leq \max\{1, \omega^2\} \sum_{\ell=0}^{\infty} \sum_{k=1}^{N(n, \ell)} (\lambda_\ell + 1)|\hat{u}_{\ell, k}|^2
\]
\[
\leq A_1 \left(\sum_{\ell=0}^{\infty} \sum_{k=1}^{N(n, \ell)} (\lambda_\ell + 1)|\hat{u}_{\ell, k}|^2 \right)^{1/2} \left(\sum_{\ell=0}^{\infty} \sum_{k=1}^{N(n, \ell)} (\lambda_\ell + 1)|\hat{v}_{\ell, k}|^2 \right)^{1/2}
\]
\[
= A_1 \left(\sum_{\ell=0}^{\infty} \sum_{k=1}^{N(n, \ell)} (\lambda_\ell + 1)|\hat{u}_{\ell, k}|^2 \right)^{1/2}
\]
where \(A_1 = \max\{1, \omega^2\} \). For the second inequality, we have
\[
a(u, u) = \sum_{\ell=0}^{\infty} \sum_{k=1}^{N(n, \ell)} (\lambda_\ell + \omega^2)|\hat{u}_{\ell, k}|^2
\]
\[
\geq \min\{1, \omega^2\} \sum_{\ell=0}^{\infty} \sum_{k=1}^{N(n, \ell)} (\lambda_\ell + 1)|\hat{u}_{\ell, k}|^2
\]
\[
= A_0 \|u\|_{H^1(S_n)}^2,
\]
where \(A_0 = \min\{1, \omega^2\} \). \(\square\)

We remark that a direct consequence of the lemma is that \(a(u, u) \sim \|u\|_{H^1(S_n)}^2 \).

The Ritz-Galerkin approximation problem is:
\[
\text{(19) Find } u_X \in V_X \text{ such that } a(u_X, v) = \langle f, v \rangle \quad \forall v \in V_X.
\]

The problem will reduce to the problem of solving the following linear system
\[
\text{(20) } Bc = f,
\]
where the entries of the matrix \(B \) are given as \(B_{i,j} = a(\Phi_i, \Phi_j) \) and the vector \(f \) is given as \(f = [f_j]_{j=1}^{N} \) in which \(f_j = \langle f, \Phi_j \rangle \) for \(i, j = 1, \ldots, N \).

The following lemma, which is a variant of the Funk-Hecke formula (see [13]), facilitates the computation of each entry of the matrix \(B \).

Lemma 3.2. For any two zonal functions \(\psi(t) \) and \(\phi(t) \) of the form (9), we have the following relation
\[
\int_{S^n} \psi(x \cdot z) \phi(y \cdot z) dS(z) = \frac{1}{\omega_n} \sum_{\ell=0}^{\infty} N(n, \ell) \hat{\psi}(\ell) \hat{\phi}(\ell) P_\ell(n + 1; x \cdot y).
\]

Proof. From the definition, \(\psi(x \cdot z) \) and \(\phi(y \cdot z) \) have the following expansions in terms of spherical harmonics:
\[
\psi(x \cdot z) = \sum_{\ell=0}^{\infty} \sum_{k=1}^{N(n, \ell)} \hat{\psi}(\ell) Y_{\ell, k}(x) Y_{\ell, k}(z),
\]
\[
\phi(y \cdot z) = \sum_{\ell=0}^{\infty} \sum_{k=1}^{N(n, \ell)} \hat{\phi}(\ell) Y_{\ell, k}(y) Y_{\ell, k}(z).
\]
Then, by using the orthogonality of spherical harmonics and the addition formula (2), we obtain
\[
\int_{S^n} \psi(x \cdot z) \phi(z \cdot y) dS(z) = \sum_{\ell=0}^{\infty} \sum_{k=1}^{N(n, \ell)} \hat{\psi}(\ell)\hat{\phi}(\ell) Y_{\ell,k}(x) Y_{\ell,k}(y)
\]
\[
= \frac{1}{\omega_n} \sum_{\ell=0}^{\infty} N(n, \ell) \hat{\phi}(\ell) P_{\ell}(n+1; x \cdot y).
\]
\[
\square
\]
If the supports of \(\Phi_i \) and \(\Phi_j \) do not overlap then \(B_{i,j} = 0 \). This follows from \(a(\Phi_i, \Phi_j) = \langle -\Delta^* \Phi_i + \omega^2 \Phi_i, \Phi_j \rangle \), together with the fact that the support of \(\Delta^* \Phi_i \) is the same as that of \(\Phi_i \). (This follows from the second-order differential operator form of the Laplace-Beltrami operator.) If the supports of \(\Phi_i \) and \(\Phi_j \) overlap then, by applying Lemma 3.2 we have
\[
B_{i,j} = \int_{S^n} (-\Delta^* + \omega^2) \phi(x_i \cdot x) \phi(x_j \cdot x) dS(x)
\]
\[
= \frac{1}{\omega_n} \sum_{\ell=0}^{\infty} N(n, \ell) (\lambda_{\ell} + \omega^2) [\hat{\phi}(\ell)]^2 P_{\ell}(n+1; x_i \cdot x_j).
\]

4. The abstract framework of additive Schwarz methods
Additive Schwarz methods provide fast solutions to equation (19) by solving, at the same time, problems of smaller size. Let the space \(V_X \) be decomposed as
\[
V_X = V_0 + \ldots + V_J,
\]
where \(V_j, j = 0, \ldots, J \), are subspaces of \(V_X \), and let \(P_j : V_X \rightarrow V_j, j = 0, \ldots, J \), be projections defined by
\[
a(P_j v, w) = a(v, w) \quad \forall v \in V_X, \forall w \in V_j.
\]
If we define
\[
P := P_0 + \ldots + P_J,
\]
then the additive Schwarz method for equation (19) consists of solving, by an iterative method, the equation
\[
P u_X = g,
\]
where the right-hand side is given by \(g = \sum_{j=0}^{J} g_j \), with \(g_j \in V_j \) being solutions of
\[
a(g_j, w) = \langle f, w \rangle, \quad \text{for any } w \in V_j.
\]
The well-known equivalence of (19) and (24) was discussed explicitly in [20]. In fact, if \(u_X \) is a solution of (19) then from the definition of \(P_j \) and \(g_j \) we deduce
\[
a(P_j u_X, w) = a(u_X, w) = \langle f, w \rangle = a(g_j, w) \quad \text{for any } w \in V_j,
\]
i.e. \(P_j u_X = g_j \). Hence \(Pu_X = g \). On the other hand, if \(P : V_X \rightarrow V_X \) is invertible and \(u_X \) is the solution of (24), then by using successively the symmetry of \(P \) and
(22) and (25), we obtain
\[
a(u_X, v) = a(P^{-1}g, v) = a(g, P^{-1}v) \\
= \sum_{j=0}^{J} a(g_j, P^{-1}v) = \sum_{j=0}^{J} a(g_j, P_j P^{-1}v) \\
= \sum_{j=0}^{J} \langle f, P_j P^{-1}v \rangle = \langle f, v \rangle \text{ for any } v \in V_X.
\]

A practical method to solve (24) is the conjugate gradient method; the additive Schwarz method (see Section 6) can be viewed as a preconditioned conjugate gradient method.

Bounds for \(\lambda_{\text{min}}(P)\) and \(\lambda_{\text{max}}(P)\), the minimum and maximum eigenvalues of the additive Schwarz operator \(P\), can be obtained by using the following lemma, see [16, 24].

Lemma 4.1. (i) Assume that there exists a constant \(c_1 > 0\) such that, for any \(u \in V_X\) satisfying \(u = \sum_{j=0}^{J} u_j\) with \(u_j \in V_j\) for \(j = 0, \ldots, J\) the following inequality
\[
a(u, u) \leq c_1 \sum_{j=0}^{J} a(u_j, u_j)
\]
holds. Then
\[
\lambda_{\text{max}}(P) \leq c_1.
\]
(ii) Assume that there exists a constant \(c_2 > 0\) such that any \(u \in V_X\) has a decomposition \(u = \sum_{j=0}^{J} u_j\) satisfying
\[
\sum_{j=0}^{J} a(u_j, u_j) \leq c_2 a(u, u).
\]
Then
\[
\lambda_{\text{min}}(P) \geq c_2^{-1}.
\]

5. **Additive Schwarz method for elliptic PDEs on the unit sphere**

In this section we will define a subspace decomposition of the form (21), and in this way define the additive Schwarz operator for problem (19). We will then present the main theoretical result of the paper, namely an estimate for the condition number of the additive Schwarz operator.

In the proof, sometimes we need to extend a function \(f\) defined on \(S^n\) to a function \(\tilde{f}\) defined on a spherical layer
\[
S^n(\epsilon) := \{ x \in \mathbb{R}^{n+1} : 1 - \epsilon \leq \|x\| \leq 1 + \epsilon \},
\]
for some small \(\epsilon > 0\) so that all partial derivatives \(\partial f / \partial x_k\) of \(f\) are well defined as restrictions of \(\partial \tilde{f} / \partial x_k\). The extension we choose is
\[
\tilde{f}(x) = \frac{1}{\|x\|} f \left(\frac{x}{\|x\|} \right), \quad x \in S^n(\epsilon).
\]

In the following, suppose \(Y\) is a subset of \(X\) and (cf (18)) \(V_Y = \text{span}\{\Phi(x_i, \cdot) : x_i \in Y\}\). We define the linear map \(G_Y : H^1(S^n) \to V_Y\) by
\[
a(G_Y u, v) = a(u, v) \quad \forall v \in V_Y.
\]
Lemma 5.1. The linear map G_Y given by (26) is well-defined and satisfies
\begin{equation}
\|G_Y u\|_{H^1(S^n)} \leq c \|u\|_{H^1(S^n)}, \quad u \in H^3(S^n),
\end{equation}
where c is a positive constant independent of u.

Proof. In order to find $G_Y u = \sum_{x_i \in Y} c_i \Phi_i$, we need to solve the following linear system
\begin{equation}
\sum_{x_i \in Y} c_i a(\Phi_i, \Phi_j) = a(u, \Phi_j), \quad x_j \in Y.
\end{equation}
By Lemma 3.2 the entries $a(\Phi_i, \Phi_j)$ are
\begin{equation}
B_{i,j} = \frac{1}{\omega_n} \sum_{\ell=0}^{\infty} \sum_{k=1}^{N(n,\ell)} (\lambda_\ell + \omega^2) |\hat{\phi}(\ell)|^2 Y_{\ell,k}(x_i) Y_{\ell,k}(x_j),
\end{equation}
which is of the form $K(x_i, x_j)$ where K is the strictly positive definite kernel with Fourier coefficients $(\lambda_\ell + \omega^2) |\hat{\phi}(\ell)|^2$. Therefore the element $G_Y u$ is uniquely defined.

Next, using the equivalence between $a(u, u)$ and $\|u\|_{H^1(S^n)}$ as shown in Lemma 3.1 we have
\begin{equation}
A_0 \|G_Y u\|_{H^1(S^n)}^2 \leq a(G_Y u, G_Y u) = a(u, G_Y u) \leq A_1 \|u\|_{H^1(S^n)} \|G_Y u\|_{H^1(S^n)}.
\end{equation}
Cancelling $\|G_Y u\|_{H^1(S^n)}$ on both sides of inequality (28), we obtain (27). \hfill \Box

Let α and β be fixed numbers satisfying $0 < \alpha < \beta < \pi/2$, and let $X_0 := \{p_j : j = 1, \ldots, J\}$ be a subset of X such that the cap $C(p_j, \beta)$ is wholly in U_1 or U_2 (or both) of the atlas \mathcal{A} and
\begin{equation}
S^n = \bigcup_{j=1}^{J} C(p_j, \alpha).
\end{equation}
Assume that the support of $\Phi(p, \cdot)$, which is a spherical cap centered at p, has radius γ. (In the case of SBF constructed from Wendland’s radial basis functions, $\gamma = \pi/3$).

For $j = 1, \ldots, J$, the subset X_j is defined as
\begin{equation}
X_j := \{x_k \in X : \theta(x_k, p_j) \leq \alpha\}.
\end{equation}
The sets X_j may have different numbers of elements and may overlap each other. Because of (29) it is clear that X is decomposed into J overlapping subsets $\{X_j : j = 1, \ldots, J\}$ of discrete points such that
\begin{equation}
X = \bigcup_{j=1}^{J} X_j.
\end{equation}
We define $V_j = V_{X_j}$, $j = 0, \ldots, J$, i.e. $V_j = \text{span} \{\Phi_k : x_k \in X_j\}$, so that $V_X = V_0 + \ldots + V_J$. The Schwarz operator P is then defined by (22) and (23). Functions in V_j have supports in Γ_j, where
\begin{equation}
\Gamma_j := C(p_j, \alpha + \gamma), \quad j = 1, \ldots, J.
\end{equation}
We assume that:

Assumption 5.1. We can partition the index set $\{1, \ldots, J\}$ into M (for $1 \leq M \leq J$) sets J_m, for $1 \leq m \leq M$ such that if $i,j \in J_m$ and $i \neq j$ then $\Gamma_i \cap \Gamma_j = \emptyset$.

The partitioning problem mentioned in Assumption 5.1 is related to the graph colouring problem [2]. We can define an undirected graph \(G = (V, E) \) in which the set of vertices \(V = \{ \nu_1, \ldots, \nu_J \} \) is identified with the set of caps \(\Gamma_j \), and \(E \) is the set of edges, where if \(\Gamma_i \cap \Gamma_j \neq \emptyset \) then there is an edge between \(\nu_i \) and \(\nu_j \). A partition satisfying Assumption 5.1 is equivalent to a colouring of the vertices of \(G \) so that adjacent vertices have different colours. The minimal number of colours needed is called the chromatic number of \(G \), and is denoted by \(\delta(G) \). In general, it is difficult to determine the chromatic number of a graph. However, it is easy to see that

\[
\delta(G) \geq \omega(G),
\]

where \(\omega(G) \) is the maximal order of a complete subgraph of \(G \), that is, it is the maximal number of vertices all of which are mutually connected. In terms of the caps, every point on the sphere \(S^n \) lies in at most \(\omega(G) \) spherical caps \(\Gamma_j \).

An upper bound of \(\delta(G) \) is given in [2, Theorem 3, Chapter 5]: when \(G \) is neither a complete graph nor an odd cycle, then \(\delta(G) \leq \Delta(G) \), with \(\Delta(G) \) being the maximal degree of \(G \). In terms of our spherical caps, each cap \(\Gamma_j \) intersects at most \(\Delta(G) \) other caps.

Therefore, for a given set \(X_0 \) and parameters \(\alpha, \gamma \), we can compute the lower bound \(M_1 \) and the upper bound \(M_2 \) so that

\[
1 \leq M_1 \leq M \leq M_2 \leq J.
\]

The proof for a lower bound of \(\lambda_{\min}(P) \) requires a decomposition of \(u \) (see part (ii) of Lemma 4.1), which in turn motivates a definition of a partition of unity on \(S^n \).

Let \(p \in S^n \) be fixed and \(\alpha \) and \(\beta \) be as above. We first define, for \(x \in S^n \),

\[
w_p(x) = \begin{cases}
1 & 0 \leq \theta(p, x) \leq \alpha, \\
S(p \cdot x) & \alpha \leq \theta(p, x) \leq \beta, \\
0 & \beta < \theta(p, x) \leq \pi,
\end{cases}
\]

where \(S(t) \) is the unique cubic polynomial satisfying \(S(\cos \alpha) = 1, S(\cos \beta) = 0, S'(\cos \alpha) = S'(\cos \beta) = 0 \), namely

\[
S(t) = H \left(\frac{t - \cos \beta}{\cos \alpha - \cos \beta} \right), \text{ with } H(s) = s^2(3 - 2s).
\]

Then \(w_p \in C^1(S^n) \) and is supported in a spherical cap \(C(p, \beta) \) (see (5)). Furthermore,

\[
\left| \frac{\partial w_p(x)}{\partial x_k} \right| \leq \frac{c}{\cos \alpha - \cos \beta} \text{ for } k = 1, \ldots, n + 1.
\]

We set the functions \(w_j(x) := w_p_j(x) \). By Assumption 5.1,

\[
1 \leq \sum_{j=1}^J w_j(x) \leq M, \quad \forall x \in S^n.
\]

The partition of unity can be defined as \(\{ \varphi_j \}_{j=1}^J \), where

\[
\varphi_j(x) = \frac{w_j(x)}{\sum_{i=1}^J w_i(x)}, \quad j = 1, \ldots, J,
\]
We observe that, due to (33) \(\tau \) and \(\tau \) where (35) can be estimated similarly. The first term is

\[\sum_{j=1}^{J} \|g\varphi_j\|^2_{H^1(S^n)} \leq cM\|g\|^2_{H^1(S^n)}. \]

With the partition of unity so defined, we now prove the following lemma.

Lemma 5.2. For any \(g \in V_X \), there is a positive constant \(c \) independent of the scattered data set \(X \), the function \(g \) and the partition of unity \(\{\varphi_j\} \) such that the following inequality holds:

\[\sum_{j=1}^{J} \|g\varphi_j\|^2_{H^1(S^n)} \leq cM\|g\|^2_{H^1(S^n)}. \]

Proof. From the definition (8), we have

\[\|g\varphi_j\|_{H^1(S^n)} = \|\pi_1(\chi_1g\varphi_j)\|^2_{H^1(R^n)} + \|\pi_2(\chi_2g\varphi_j)\|^2_{H^1(R^n)}. \]

We now estimate the first term on the right-hand side of (34); the second term can be estimated similarly. The first term is

\[\|\pi_1(\chi_1g\varphi_j)\|^2_{H^1(R^n)} = \int_{\mathbb{R}^n} |(\chi_1g\varphi_j)(\tau(t))|^2 dt + \sum_{k=1}^n \int_{\mathbb{R}^n} \left| \frac{\partial}{\partial t_k}(\chi_1g\varphi_j)(\tau(t)) \right|^2 dt, \]

where \(\tau \) is the inverse of \(\psi_1 \) defined in (7). As computed in [17], the explicit form for \(\tau(t), t = (t_1, \ldots, t_n) \in \mathbb{R}^n \) can be given as

\[\tau(t) = (\tau_1(t), \ldots, \tau_n(t), \tau_{n+1}(t)) = \frac{1}{1 + \tan^2(\theta_0/2)|t|^2} (2\tan(\theta_0/2)t_1, \ldots, 2\tan(\theta_0/2)t_n, 1 - \tan^2(\theta_0/2)|t|^2), \]

in which \(|t| = \sqrt{t_1^2 + \ldots + t_n^2} \). Simple calculation reveals

\[\max_{t \in B(0,1)} \left\| \frac{\partial \tau}{\partial t_j} \right\| \leq c(n), \quad \forall j = 1, \ldots, n. \]

We shall estimate each term in the right-hand side of (35) separately. Firstly, let \(\Omega_j = \psi_1(\text{supp} \ \varphi_j) \). Since \(\varphi_j \circ \tau \) vanishes outside \(\Omega_j \) and \(0 \leq \varphi_j \leq 1 \), the first term can be bounded by

\[\int_{\mathbb{R}^n} |(\chi_1g\varphi_j)(\tau(t))|^2 dt = \int_{\Omega_j} |(\chi_1g\varphi_j)(\tau(t))|^2 dt \leq \int_{\Omega_j} |(\chi_1g)(\tau(t))|^2 dt. \]

For the second term, we note that by the chain rule

\[\frac{\partial}{\partial t_k}(\chi_1g\varphi_j)(\tau(t)) = \varphi_j(\tau(t)) \frac{\partial}{\partial t_k}(\chi_1g)(\tau(t)) + (\chi_1g)(\tau(t)) \sum_{m=1}^{n+1} \frac{\partial \varphi_j}{\partial \tau_m} \frac{\partial \tau_m}{\partial t_k}. \]

We observe that, due to (33)

\[\left| \frac{\partial \varphi_j}{\partial \tau_m} \right| \leq c, \quad p \in S^n, \]

and for the second term, we note that by the chain rule

\[\frac{\partial}{\partial t_k}(\chi_1g\varphi_j)(\tau(t)) = \varphi_j(\tau(t)) \frac{\partial}{\partial t_k}(\chi_1g)(\tau(t)) + (\chi_1g)(\tau(t)) \sum_{m=1}^{n+1} \frac{\partial \varphi_j}{\partial \tau_m} \frac{\partial \tau_m}{\partial t_k}. \]

We observe that, due to (33)
which together with (36) implies
\[
\left| \sum_{m=1}^{n+1} \frac{\partial \varphi_j}{\partial r_m} \right| \leq \sqrt{\sum_{m=1}^{n+1} \left(\frac{\partial \varphi_j}{\partial r_m} \right)^2} \leq c(n).
\]
Hence, using the inequality $|a + b|^2 \leq 2(|a|^2 + |b|^2)$, we obtain
\[
\int_{\Omega_j} \left| \frac{\partial}{\partial t_k} (\chi_1 g \varphi_j) (\tau(t)) \right|^2 dt \leq 2 \int_{\Omega_j} \left| \frac{\partial}{\partial t_k} (\chi_1 g) (\tau(t)) \right|^2 dt + 2c \int_{\Omega_j} |(\chi_1 g) (\tau(t))|^2 dt.
\]
Putting all terms together,
\[
\| \pi_1 (\chi_1 g \varphi_j) \|_{H^1(\mathbb{R}^n)}^2 \leq c \int_{\Omega_j} \left(\| (\chi_1 g) (\tau(t)) \|_{H^1(\Omega_j)}^2 + \sum_{k=1}^n \left| \frac{\partial}{\partial t_k} (\chi_1 g) (\tau(t)) \right| \right) dt
\]
Hence, there is a constant $c > 0$ depending only on the atlas A and the dimension n of the unit sphere such that
\[
\| g \varphi_j \|_{H^1(\mathbb{R}^n)}^2 \leq c (\| \pi_1 \chi_1 g \|_{H^1(\Omega_j)}^2 + \| \pi_2 \chi_1 g \|_{H^1(\Omega_j)}^2).
\]
Since ψ_1 and ψ_2 are one-to-one, by Assumption 5.1, we can partition $\{ \Omega_j \}_{j=1}^J$ into M collections of disjoint sets. Therefore, it follows that
\[
\sum_{j=1}^J \| g \varphi_j \|_{H^1(\mathbb{R}^n)}^2 \leq cM (\| \pi_1 \chi_1 g \|_{H^1(\Omega_j)}^2 + \| \pi_2 \chi_2 g \|_{H^1(\Omega_j)}^2) = cM \| g \|_{H^1(\mathbb{R}^n)}^2.
\]

In the following, we will present a key lemma that allows us to estimate $\lambda_{\min}(P)$.

Lemma 5.3. For any $u \in V_X$, there exist $u_j \in V_j$ for $j = 0, \ldots, J$ satisfying $u = \sum_{j=0}^J u_j$ and
\[
\sum_{j=0}^J a(u_j, u) \leq cMa(u, u),
\]
where c is a positive constant independent of u, M and the set X but which may depend on the dimension n.

Proof. For $u \in V_X$ we define $u_0 = G_X u$. Then due to Lemma 5.1 we have
\[
\| u_0 \|_{H^1(\mathbb{R}^n)} = \| G_X u \|_{H^1(\mathbb{R}^n)} \leq c\| u \|_{H^1(\mathbb{R}^n)}.
\]
Now let $w = u - u_0$ and $u_j = G_X (\varphi_j w)$. Then since $G_X w = w$ we have $u = u_0 + \sum_{j=1}^J u_j$. Also it follows from Lemmas 5.1 and 5.2 that
\[
\sum_{j=0}^J \| u_j \|_{H^1(\mathbb{R}^n)}^2 = \| u_0 \|_{H^1(\mathbb{R}^n)}^2 + \sum_{j=1}^J \| G_X (\varphi_j w) \|_{H^1(\mathbb{R}^n)}^2
\]
\[
\leq \| u_0 \|_{H^1(\mathbb{R}^n)}^2 + c \sum_{j=1}^J \| \varphi_j w \|_{H^1(\mathbb{R}^n)}^2
\]
\[
\leq \| u_0 \|_{H^1(\mathbb{R}^n)}^2 + cM \| w \|_{H^1(\mathbb{R}^n)}^2
\]
\[
\leq cM \| u \|_{H^1(\mathbb{R}^n)}.\]
Using the relation $a(u, u) \sim \|u\|_{H^1(S^n)}^2$, we obtain the result.

It follows from this lemma and Lemma 4.1 that $\lambda_{\min}(P) \geq c/M$. We now state a lemma that will lead to an upper bound of the maximum eigenvalue $\lambda_{\max}(P)$.

Lemma 5.4. There exists a positive constant c independent of the set X such that for any $u \in V_X$ satisfying $u = \sum_{j=0}^J u_j$ with $u_j \in V_j$ for $j = 0, \ldots, J$ there holds

$$a(u, u) \leq cM \sum_{j=0}^J a(u_j, u_j).$$

Proof. Using the inequality $|a + b|^2 \leq 2(|a|^2 + |b|^2)$, we have

$$\|u\|_{H^1(S^n)}^2 \leq 2 \left(\|u_0\|_{H^1(S^n)}^2 + \sum_{j=1}^J \left\| \sum_{j=1}^J u_j \right\|_{H^1(S^n)}^2 \right).$$

From the definition of the Sobolev norm (8),

$$\left(37\right) \left\| \sum_{j=1}^J u_j \right\|_{H^1(S^n)}^2 = \left\| \sum_{j=1}^J \pi_1(\chi_1 u_j) \right\|_{H^1(R^n)}^2 + \sum_{j=1}^J \left\| \pi_2(\chi_2 u_j) \right\|_{H^1(R^n)}^2.$$

Now, from the fact that $u_j \in V_j$ together with Assumption 5.1 we can partition the index set $\{1, \ldots, J\}$ to M sets of indices J_m so that if $i, j \in J_m$ then supp $u_i \cap$ supp $u_j = \emptyset$. Then, in this proof only, let $g_j = \pi_1(\chi_1 u_j)$, by using the Cauchy-Schwarz inequality, we have

$$\left(38\right) \left\| \sum_{j \in J_m} g_j \right\|_{H^1(R^n)}^2 \leq cM \sum_{m=1}^M \left\| \sum_{j \in J_m} g_j \right\|_{H^1(R^n)}^2.$$

Since the supports of g_i and g_j are disjoint for $i, j \in J_m, i \neq j$,

$$\left\| \sum_{j \in J_m} g_j \right\|_{H^1(R^n)}^2 = \sum_{j \in J_m} \left\| g_j \right\|_{H^1(R^n)}^2.$$

Thus,

$$\left(39\right) \left\| \sum_{j=1}^J g_j \right\|_{H^1(R^n)}^2 \leq M \sum_{m=1}^M \sum_{J_m} \left\| g_j \right\|_{H^1(R^n)}^2 = M \sum_{j=1}^J \left\| g_j \right\|_{H^1(R^n)}^2.$$

Hence, by using similar arguments for $\pi_2(\chi_2 u_j)$, we conclude

$$\left(40\right) \left\| \sum_{j=1}^J u_j \right\|_{H^1(S^n)}^2 \leq cM \left(\sum_{j=1}^J \left\| \pi_1(\chi_1 u_j) \right\|_{H^1(R^n)}^2 + \sum_{j=1}^J \left\| \pi_2(\chi_2 u_j) \right\|_{H^1(R^n)}^2 \right)$$

$$= cM \sum_{j=1}^J \left\| u_j \right\|_{H^1(S^n)}^2.$$

□
Therefore,
\[
\|u\|_{H^1(S^n)}^2 = \left\| \sum_{j=0}^{J} u_j \right\|_{H^1(S^n)}^2 \leq cM \sum_{j=0}^{J} \|u_j\|_{H^1(S^n)}^2.
\]

Using the fact that \(a(u, u) \sim \|u\|_{H^1(S^n)}^2\) we obtain the result. \(\square\)

From this lemma and Lemma 4.1 it follows that \(\lambda_{\text{max}}(P) \leq cM\). From this and the previous result we deduce the following theorem on the condition number of the operator \(P\).

Theorem 5.1. The condition number of the additive Schwarz operator \(P\) is bounded by
\[
\kappa(P) \leq cM^2,
\]
where \(c\) is a constant independent of \(M\) and the set \(X\).

6. An overlapping additive Schwarz algorithm

As has been pointed out in [1], essential ingredients for a domain decomposition algorithm are:

(i) A method for subdividing space.
(ii) An efficient and scale independent method for solving small sub-problems. The solutions to the small problems will be used to precondition the large problem.
(iii) A fast method for computing the action of the large matrices that occur at various scales.
(iv) An outer iteration.
Suppose we number the scattered data following the satellite track as \(\{1, \ldots, N\} \). Let \(\alpha \) be a parameter in \((0, \pi/3)\). The algorithm to partition \(X \) can be described as follows.

1. The first center is \(p_1 = x_1 \).
2. The first subset \(X_1 \) is defined as in (30).
3. Suppose \(X_{j-1} \), for \(j > 1 \), has been selected around center \(p_{j-1} \). The next center \(p_j \) is chosen to be the point in \(X \) which has not been chosen as a center, and is of furthest geodesic distance from \(p_{j-1} \).
4. The subset \(X_j \) is defined as in (30).
5. Repeat step (3) and (4) until every point in \(X \) is in at least one subset \(X_j \), \(j = 1, \ldots, J \).

Now \(X_0 \) is defined by \(X_0 := \{p_1, \ldots, p_J\} \). For \(j = 0, \ldots, J \), let \(I_j \) be a subset of the index set of \(\{1, \ldots, N\} \) such that

\[
m \in I_j \leftrightarrow x_m \in X_j.
\]

The cardinality of the set \(I_j \) is denoted by \(s_j \) and the \(m \)-th element of the set \(I_j \) is denoted by \(I_j(m) \). For a given vector \(v = (v_1, \ldots, v_N)^T \), the restriction of \(v \) on \(X_j \) is the vector \(u = (u_1, u_2, \ldots, u_{s_j})^T \) defined as follows

\[
u_m := v_{I_j(m)}, \quad m = 1, \ldots, s_j,
\]

and we write \(u = R_j(v) \), thus the restriction operation to \(X_j \) is denoted by \(R_j \). Conversely, for a vector \(u = (u_1, \ldots, u_{s_j})^T \), we extend \(u \) to \(v = (v_1, \ldots, v_N)^T \) as

\[
v_k := \begin{cases}
u_m & \text{if } k = I_j(m) \text{ for } 1 \leq m \leq s_j, \\ 0 & \text{otherwise}. \end{cases}
\]

and write \(v = E_j(u) \), where \(E_j \) denotes the extension operation.

A pseudo code.

INPUT

Input the scattered set \(X \) on the sphere, the right-hand side \(f \), and the desired accuracy \(\epsilon \).

SETUP

1. Partition the scattered set \(X \) into \(J \) overlapping subsets \(X_j \) for \(j = 1, \ldots, J \) and construct the global coarse set \(X_0 \).
2. The initial residual vector \(r = f \) (see (20)).
3. The initial pseudo-residual vector \(p = 0 \).
4. The initial solution vector \(s = 0 \).
5. The iteration counter \(\text{iter} = 0 \).

ITERATIVE SOLUTION

1. while \(\| r \| > \epsilon \| f \| \)
2. \[\text{Set } p = 0. \]
3. \[\text{for } j = 1 \text{ to } J \]
4. \[\text{Construct the local matrix } C \text{ with entries } C_{m,n} = B_{I_j(m), I_j(n)}. \]
5. \[\text{Set the restriction residual vector } z = R_j(r). \]
6. \[\text{Solve the linear system } Cy = z. \]
7. \[\text{Update the pseudo-residual vector } p = p + E_j(y). \]
8. \[\text{end for} \]
(9) Construct the coarse global matrix G with entries
$$G_{m,n} = B_{I(n,m),I(n)}.$$

(10) Set $z_g = R_0(r)$.

(11) Solve the linear system $Gy_g = z_g$.

(12) Update the pseudo-residual vector $p = p + E_0(y_g)$.

(13) If iter > 0 then set $\zeta_0 = \zeta_1$.

(14) Set $\zeta_1 = p \cdot r$.

(15) Update the counter, iter = iter + 1.

(16) If iter = 1 then define $\overline{p} = p$ else $\overline{p} = p + (\zeta_1/\zeta_0)p$.

(17) Update the residual vector
$$r = r - \left(\frac{r \cdot p}{p \cdot Bp} \right) Bp.$$

(18) Update the solution vector
$$s = s + \left(\frac{r \cdot p}{p \cdot Bp} \right) p.$$

(19) end while

7. Numerical results

In this section, we present numerical experiments on S^2 based on globally scattered data extracted from a very large data set collected by NASA’s satellite MAGSAT. The scattered data sets X are extracted so that the separation radius q_X satisfies $q_X \geq q$, where $0 < q < \pi/3$ is a given number. The code is written in FORTRAN 90 and was run on computers equipped with dual Opteron 2.0GHz CPU and 4GB RAM.

We wish to solve
$$(-\Delta^* + I)u(x) = f(x), \quad x \in S^2,$$
with I being the identity operator. The function f is defined to be
$$f(x) = f(x_3) = (-\Delta^* + I)\rho_{3,2}((\sqrt{2} - 2x_3), \quad x_3 \in [-1, 1],$$
with $\rho_{3,2}(r) = (1 - r)^8_+ (35r^2 + 18r + 3)$ so that the exact solution is
$$u = \rho_{3,2}((\sqrt{2} - 2x_3).$$

The radial basis function $\Psi_{3,2}(x) = \rho_{3,2}(\|x\|)$ is in $C^4(\mathbb{R}^3)$ (see Section 2.3).

In the first set of numerical experiments, the spherical basis functions are derived from Wendland’s radial basis function $\Psi_{3,3}(x) = \rho_{3,3}(\|x\|)$, which is in $C^6(\mathbb{R}^3)$ (see Section 2.3),
$$\phi(x \cdot y) = \rho_{3,3}(\sqrt{2} - 2x \cdot y), \quad \rho_{3,3}(r) = (1 - r)^8_+ (32r^3 + 25r^2 + 8r + 1).$$

Recalling Lemma 3.2 with $n = 2$, $N(n, \ell) = 2\ell + 1$ and $\lambda_\ell = \ell(\ell + 1)$, each entry of the matrix B is given by
$$B_{i,j} = \int_{S^2} (-\Delta^* + \omega^2)\phi(x_i \cdot x)\phi(x_j \cdot x)dS(x)$$
$$= \frac{1}{4\pi} \sum_{\ell=0}^{\infty} (2\ell + 1)(\lambda_\ell + \omega^2)[\hat{\phi}(\ell)]^2 P_\ell(3; x_i \cdot x_j).$$
In our experiments, $B_{i,j}$ is approximated by a partial sum of the first 3000 terms. The Legendre coefficients of the univariate function $\hat{\phi}(\ell)$ were computed by approximating (10) by an appropriate Gaussian quadrature over the interval $[-1, 1]$.

We then test the overlapping method as the preconditioner for the conjugate gradient method with different values of $\cos \alpha$, and hence different values of J and M. The stopping criterion for the iteration is

$$\frac{\|Bc^{(m)} - f\|_{L^2}}{\|f\|_{L^2}} \leq 10^{-6},$$

where B and f are the stiffness matrix and the right-hand side vector as in (20). In the following tables, $\kappa(P)$ is the condition number, the CPU time is measured in seconds, and iter is the number of iterations. The results for the first experiment are shown in Table 1. Here M_1 and M_2 are the lower and upper bounds on M from (31).

In the second set of experiments, the spherical basis function is derived from a less smooth radial basis function $\Psi_{3,2} \in C^4(\mathbb{R}^3)$,

$$\phi(x \cdot y) = \rho_{3,2}(\sqrt{2 - 2x \cdot y}), \quad \rho_{3,2}(r) = (1 - r)^6 (35r^2 + 18r + 3).$$

The results are shown in Table 2.
Table 1. Condition numbers of the Schwarz operator using $\rho_{3,3}(r)$ as RBF

<table>
<thead>
<tr>
<th>N</th>
<th>q_X</th>
<th>$\cos \alpha$</th>
<th>M_1</th>
<th>M_2</th>
<th>J</th>
<th>λ_{min}</th>
<th>λ_{max}</th>
<th>$\kappa(P)$</th>
<th>CPU</th>
<th>iter</th>
</tr>
</thead>
<tbody>
<tr>
<td>10443</td>
<td>$\frac{\pi}{240}$</td>
<td>0.98</td>
<td>77</td>
<td>183</td>
<td>201</td>
<td>0.0169</td>
<td>26.06</td>
<td>1544</td>
<td>98.9</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.97</td>
<td>56</td>
<td>129</td>
<td>138</td>
<td>0.0883</td>
<td>20.93</td>
<td>236.9</td>
<td>60.6</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.95</td>
<td>40</td>
<td>83</td>
<td>86</td>
<td>0.1057</td>
<td>16.02</td>
<td>151.5</td>
<td>71.9</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.86</td>
<td>20</td>
<td>32</td>
<td>33</td>
<td>0.2943</td>
<td>10.05</td>
<td>34.2</td>
<td>161.4</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.57</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>0.8955</td>
<td>6.712</td>
<td>7.5</td>
<td>731.0</td>
<td>15</td>
</tr>
<tr>
<td>13775</td>
<td>$\frac{\pi}{280}$</td>
<td>0.99</td>
<td>150</td>
<td>388</td>
<td>445</td>
<td>0.0271</td>
<td>46.91</td>
<td>1729</td>
<td>147.0</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.98</td>
<td>75</td>
<td>180</td>
<td>196</td>
<td>0.0337</td>
<td>26.29</td>
<td>780.2</td>
<td>133.0</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.97</td>
<td>56</td>
<td>132</td>
<td>140</td>
<td>0.0756</td>
<td>21.27</td>
<td>281.4</td>
<td>100.4</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.86</td>
<td>20</td>
<td>33</td>
<td>34</td>
<td>0.4417</td>
<td>10.57</td>
<td>23.9</td>
<td>303.3</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.74</td>
<td>15</td>
<td>18</td>
<td>19</td>
<td>0.9740</td>
<td>8.67</td>
<td>8.9</td>
<td>685.5</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.72</td>
<td>15</td>
<td>18</td>
<td>19</td>
<td>1.0490</td>
<td>9.03</td>
<td>8.6</td>
<td>846.7</td>
<td>16</td>
</tr>
<tr>
<td>17078</td>
<td>$\frac{\pi}{320}$</td>
<td>0.99</td>
<td>150</td>
<td>395</td>
<td>453</td>
<td>0.0564</td>
<td>46.96</td>
<td>832.9</td>
<td>197.0</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.84</td>
<td>20</td>
<td>29</td>
<td>30</td>
<td>0.6334</td>
<td>9.91</td>
<td>15.6</td>
<td>686.0</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.83</td>
<td>20</td>
<td>29</td>
<td>30</td>
<td>0.8675</td>
<td>10.17</td>
<td>11.7</td>
<td>739.0</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.59</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>1.0430</td>
<td>6.29</td>
<td>6.0</td>
<td>2544.8</td>
<td>14</td>
</tr>
</tbody>
</table>

Table 2. Condition numbers of the Schwarz operator using $\rho_{3,2}(r)$ as RBF

<table>
<thead>
<tr>
<th>N</th>
<th>q_X</th>
<th>$\cos \alpha$</th>
<th>M_1</th>
<th>M_2</th>
<th>J</th>
<th>λ_{min}</th>
<th>λ_{max}</th>
<th>$\kappa(P)$</th>
<th>CPU</th>
<th>iter</th>
</tr>
</thead>
<tbody>
<tr>
<td>10443</td>
<td>$\frac{\pi}{240}$</td>
<td>0.98</td>
<td>77</td>
<td>183</td>
<td>201</td>
<td>0.0143</td>
<td>28.13</td>
<td>1969</td>
<td>76.7</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.97</td>
<td>56</td>
<td>129</td>
<td>138</td>
<td>0.1963</td>
<td>22.28</td>
<td>113.5</td>
<td>39.7</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.95</td>
<td>40</td>
<td>83</td>
<td>86</td>
<td>0.1786</td>
<td>16.97</td>
<td>95.0</td>
<td>57.7</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.86</td>
<td>20</td>
<td>32</td>
<td>33</td>
<td>0.3588</td>
<td>10.47</td>
<td>29.2</td>
<td>142.9</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.57</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>1.0670</td>
<td>6.76</td>
<td>6.3</td>
<td>672.5</td>
<td>14</td>
</tr>
<tr>
<td>13775</td>
<td>$\frac{\pi}{280}$</td>
<td>0.99</td>
<td>150</td>
<td>388</td>
<td>445</td>
<td>0.0326</td>
<td>51.80</td>
<td>1588</td>
<td>125.9</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.98</td>
<td>75</td>
<td>180</td>
<td>196</td>
<td>0.0566</td>
<td>28.24</td>
<td>473.3</td>
<td>105.1</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.97</td>
<td>56</td>
<td>132</td>
<td>140</td>
<td>0.0792</td>
<td>22.70</td>
<td>286.5</td>
<td>88.2</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.86</td>
<td>20</td>
<td>33</td>
<td>34</td>
<td>0.5922</td>
<td>10.97</td>
<td>18.5</td>
<td>279.2</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.74</td>
<td>15</td>
<td>18</td>
<td>19</td>
<td>1.1000</td>
<td>8.82</td>
<td>8.0</td>
<td>690.1</td>
<td>16</td>
</tr>
<tr>
<td>17078</td>
<td>$\frac{\pi}{320}$</td>
<td>0.99</td>
<td>150</td>
<td>395</td>
<td>453</td>
<td>0.1368</td>
<td>51.81</td>
<td>378.6</td>
<td>137.0</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.84</td>
<td>20</td>
<td>29</td>
<td>30</td>
<td>0.8843</td>
<td>10.25</td>
<td>11.6</td>
<td>602.8</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.83</td>
<td>20</td>
<td>29</td>
<td>30</td>
<td>1.0410</td>
<td>10.56</td>
<td>10.1</td>
<td>678.7</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.59</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>1.0270</td>
<td>6.46</td>
<td>6.3</td>
<td>2502.6</td>
<td>14</td>
</tr>
</tbody>
</table>

As can be seen from both numerical results, when $\cos \alpha$ decreases, M_1 and M_2 decrease, the condition number of the Schwarz operator decreases, but the CPU time decreases then increases. In order to minimize the CPU time, we should choose an appropriate value for $\cos \alpha$ which is greater than 0.5 and less than 1.0. It seems that the smoothness of the kernel does not effect the algorithm.

Table 3 shows the CPU time and condition number of the matrix B using the conjugate gradient method without preconditioners. For the first set of 10443 scattered points with separation radius $\pi/240$, both the condition number and the CPU time.
time are much worse than those in Tables 1 and 2. For the remaining two sets of data, the conjugate gradient method does not converge.

| Table 3. Conjugate gradient method without preconditioners |
| --- | --- | --- | --- | --- | --- |
| N | q_X | λ_{min} | λ_{max} | $\kappa(B)$ | CPU time | iter |
| 10443 | $\pi/4$ | 0.2585E-03 | 0.6767E+04 | 0.2618E+08 | 2204.98 | 3512 |
| 13775 | $\pi/2$ | N/A | N/A | N/A | N/A | N/A |
| 17078 | $3\pi/4$ | N/A | N/A | N/A | N/A | N/A |

We also compute the discrete maximum errors and ℓ_2 errors over a scattered set $\mathcal{G} = \{x_g\}$ of 19075 points over S^2. Let

$$\text{err}_{\infty} = \max_{x_g \in \mathcal{G}} |u_X(x_g) - u(x_g)|,$$

and let

$$\text{err}_2 = \frac{1}{|\mathcal{G}|} \left(\sum_{x_g \in \mathcal{G}} |u(x_g) - u_X(x_g)|^2 \right)^{1/2}.$$

Table 4 and 5 summarize the computed results.

| Table 4. Errors using $\rho_{3,3}(r)$ as RBF |
| --- | --- | --- | --- | --- | --- |
| N | $\cos \alpha$ | M_1 | M_2 | J | err_{∞} | err_2 |
| 10443 | 0.98 | 77 | 183 | 201 | 8.3899E-4 | 4.5345E-7 |
| 0.95 | 40 | 83 | 86 | 8.3814E-4 | 4.5345E-7 |
| 0.57 | 10 | 10 | 11 | 8.3826E-4 | 4.5339E-7 |
| 13775 | 0.99 | 150 | 388 | 445 | 8.2110E-4 | 4.3221E-7 |
| 0.86 | 20 | 33 | 34 | 8.2099E-4 | 4.3212E-7 |
| 0.72 | 15 | 18 | 19 | 8.2106E-4 | 4.3212E-7 |
| 17078 | 0.99 | 150 | 395 | 453 | 7.5806E-4 | 3.9195E-7 |
| 0.84 | 20 | 29 | 30 | 7.5756E-4 | 3.9195E-7 |
| 0.59 | 10 | 10 | 11 | 7.5699E-4 | 3.9190E-7 |

| Table 5. Errors using $\rho_{3,2}(r)$ as RBF |
| --- | --- | --- | --- | --- | --- |
| N | $\cos \alpha$ | M_1 | M_2 | J | err_{∞} | err_2 |
| 10443 | 0.98 | 77 | 183 | 201 | 1.0812E-3 | 4.6893E-7 |
| 0.95 | 40 | 83 | 86 | 1.0809E-3 | 4.6886E-7 |
| 0.57 | 10 | 10 | 11 | 1.0807E-3 | 4.6887E-7 |
| 13775 | 0.99 | 150 | 388 | 445 | 1.0999E-3 | 4.5315E-7 |
| 0.86 | 20 | 33 | 34 | 1.1003E-3 | 4.5318E-7 |
| 0.72 | 15 | 18 | 19 | 1.1005E-3 | 4.5319E-7 |
| 17078 | 0.99 | 150 | 395 | 453 | 1.0150E-3 | 4.0106E-7 |
| 0.84 | 20 | 29 | 30 | 1.0146E-3 | 4.0108E-7 |
| 0.59 | 10 | 10 | 11 | 1.0148E-3 | 4.0104E-7 |
The support of the Australian Research Council under its Centres of Excellence program is gratefully acknowledged.

References
