MATHEMATICS ENRICHMENT CLUB.¹
Problem Sheet 6, June 4, 2012

1. A parallelogram \(ABCD \) has \(BC = 4 \) cm and \(CD = 8 \) cm. The point \(A \) is 3 cm above \(CD \). Find the length of the perpendicular from \(A \) to \(BC \).

2. If \(a, b, c \) are real numbers and \(a > b \), which of the following must be true?

 \[
 \begin{align*}
 (a) \quad \frac{1}{a} &> \frac{1}{b} \\
 (b) \quad ac &> bc \\
 (c) \quad a^2 &> b^2 \\
 (d) \quad a + c &> b + c \\
 (e) \quad \frac{1}{a} &< \frac{1}{b}.
 \end{align*}
 \]

3. (a) Verify that \(x = 170, y = 39 \) satisfy \(x^2 = 19y^2 + 1 \).

 (b) Hence find integers \(x \) and \(y \) such that \(x^2 = 171y^2 + 1 \) and \(x^2 = 3211y^2 + 1 \).

4. A rectangle has perimeter 20 cm. What is the least value of the diagonal?

5. From the point \((x, y) \) we can move a counter to any one of the following points:

 \((2x, y), (x, 2y) \)

 or

 \((x - y, y) \) if \(x > y \), \((x, y - x) \) if \(y > x \).

 Starting from \((1, 1)\) can you see a rule to determine which points in the plane can be reached using the rules above?

6. The line joining a vertex of a triangle to the midpoint of the opposite side is called a median. Let \(m_A \) denote the median in triangle \(ABC \) from \(A \) to \(BC \).

 (a) Show that \(AB + AC > 2m_A \). (Hint: Think about parallelograms)

 (b) Deduce that \(AB + AC + BC > m_A + m_B + m_C \).

7. Given a circle \(K \) with centre \(O \) and diameter \(AB \), let \(C \) be any point on \(K \).

 (a) Prove that \(\angle ACB = 90^\circ \).

 (b) Describe how to construct a right-angled triangle \(ACB \) if we are given its hypotenuse \(AB \) and the length of the perpendicular dropped from \(C \) to \(AB \).

¹Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.
Senior Questions.

1. Let \(S(x) = \frac{e^x - e^{-x}}{2} \) and \(C(x) = \frac{e^x + e^{-x}}{2} \).

 (a) Show that \((C(x))^2 - (S(x))^2 = 1 \).

 (b) If \(S(x) = \tan \theta \), express \(C(x) \) in terms of \(\theta \).

2. Find the integral

 \[
 \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos^4 \theta}{\sin^2 \theta} \, d\theta.
 \]

3. A die is thrown \(n \) times. Show that if the probability that a 6 appears at least once is greater than \(\frac{1}{2} \), then \(n > \frac{\log 2}{\log 6 - \log 5} \).