1. In how many ways can 6 boys and 6 girls stand next to each other in a row such that no two boys stand next to each other and no two girls stand next to each other?

2. The notation $5!$ means $5 \times 4 \times 3 \times 2 \times 1 (= 120)$. How many zeros are there at the end of $1000!$.

3. (a) a, b are positive numbers with $a + b = k$. Explain why ab is greatest when $a = b = \frac{k}{2}$.

(b) Suppose that $x^2 + y^2 = c^2$, find the minimum value of $x^4 + y^4$.

4. (a) Show that there are infinitely many non-zero integers x, y, z such that $2x + 2y = 2z$.

(b) Show that if $n > 2$ then there are no nonzero integers x, y, z such that $n^x + n^y = n^z$.

5. (Parts b and c require Year 9 and Year 10 Mathematics).
Let ABC be an isosceles triangle with the base angles B and C being 72° and $AB = AC = 4$. The length of the base BC, called x is chosen such that a line CD can be drawn, where D lies on AB, such that $\angle BDC = 72^\circ$.

(a) Find a pair of similar triangles and show that x satisfies, $x^2 + 4x - 16 = 0$.

(b) Use triangle ABC to find $\cos 72^\circ$ in surd form.

(c) Use triangle ACD to find $\cos 36^\circ$ in surd form.

6. Suppose that two non-parallel straight lines k and ℓ meet at a point P which is not on the page of my book. Construct a line which would (if P did lie on the page) bisect the angle between the lines and pass through P.

7. Let K, L be points on the sides AB, AD respectively of the convex quadrilateral $ABCD$ such that $AK = \frac{1}{3}AB$ and $AL = \frac{1}{3}AD$. Similarly, M, N are points on CD, CB such that $CM = \frac{1}{3}CD$ and $CN = \frac{1}{3}CB$.

(a) Prove that $KLMN$ is a parallelogram.

(b) Find the ratio of the area of $KLMN$ to the area of $ABCD$.

1Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.
Year 11 Question.

1. Suppose that m and n are positive real numbers. Use trigonometry to find the maximum value of
\[
\frac{m + n}{\sqrt{m^2 + n^2}}
\]