1. \(\text{LCM}(10, 12) = 2^2 \times 3 \times 5 = 60 \) minutes.

2. \(6528(10a + 3) = 8256(30 + a) \) implies \(a = 4 \)

3. 3 play only the piano.

4. Let \(p(x) = (3 + 2x + x^2)^{1998} = a_0 + a_1x + a_2x^2 + \cdots \).
 (a) \(a_0 = p(0) = 3^{1998}, a_1 = p'(0) = 1998(3+2\times0+0^2)^{1997} \times (2+2\times0) = 1998 \times 3^{1997} \times 2 \)
 (b) \(a_0 + a_1 + a_2 + \cdots = p(1) = (3 + 2 + 1)^{1998} = 6^{1998} \)
 (c) \(a_0 - a_1 + a_2 - \cdots = p(-1) = (3 - 2 + 1)^{1998} = 2^{1998} \).

5. (a) Since \(a + b + c = 2 \) and \(a + b > c, a + c > b \) and \(b + c > a \) each \(a, b, c < 1 \).
 (b)
 \[
 (1 - a)(1 - b)(1 - c) > 0 \\
 1 - (a + b + c) + ab + bc + ca - abc > 0 \\
 -1 + ab + bc + ca - abc > 0
 \]
 and
 \[
 (a + b + c)^2 = 4 \\
 a^2 + b^2 + c^2 + 2(ab + bc + ca) = 4 \\
 ab + bc + ca = 2 - \frac{1}{2}(a^2 + b^2 + c^2).
 \]
 Combining the two yields the answer.

6. (a) Using the triangle inequality gives \(AC < AB + BC, AC < AD + DC, BD < AD + AB \) and \(BD < BC + CD \), summing all of these together gives
 \[
 2(AC + BD) < 2(AB + BC + CD + AD) \\
 AC + BD < p.
 \]

1Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.
Mark as E the intersection of AC and BD, then again using the triangle inequality we have $AB < AE + EB$, $BC < EB + EC$, $CD < CE + ED$ and $AD < ED + AE$. Again summing all of these together gives

$$AB + BC + CD + AD < AE + EC + BE + ED + BE + ED + CE + EA$$

$$p < AC + BD + BE + CA$$

$$p < 2(AC + BD)$$

$$\frac{1}{2}p < AC + BD.$$ (b) The lines AE, BE, CE and DE divide the quadrilateral into 4 pieces. Say $\angle AEB = \theta$, and $\angle BEC = \phi$, then by opposite angles $\angle CED = \theta$ and $\angle AED = \phi$. The 4 angles must sum to 2π so $2\theta + 2\phi = 2\pi \implies \phi = \pi - \theta$. Note also that $\sin \theta = \sin (\pi - \theta)$. Now we may sum the area of the 4 triangles to determine the area of the quadrilateral:

$$a = \frac{1}{2} AE \cdot BE \sin \theta + \frac{1}{2} BE \cdot CE \sin \phi + \frac{1}{2} CE \cdot DE \sin \theta + \frac{1}{2} DE \cdot AE \sin \phi$$

$$= \frac{1}{2} \sin \theta (AE \cdot BE + BE \cdot CE + CE \cdot DE + DE \cdot AE)$$

$$= \frac{1}{2} \sin \theta (AE + EC) (BE + ED)$$

$$= \frac{1}{2} \sin \theta AC \cdot BD \leq \frac{1}{2} AC \cdot BD.$$ (c) We can see from the above that equality of the last expression holds if $\sin \theta = 1 \implies \theta = \frac{\pi}{2}$, thus if $AC \cdot BD = 2a$ then the diagonals are perpendicular.
Figure 1: Diagram for question 7

7. From the diagram we can see three sets of rhombi, each with side length r, the radius of the three circles, which are O_2BO_3P, O_3CO_1P and O_1AO_2P (drawn in black). Each is a rhombus because all 4 sides are equal. Thus $O_2B||O_3P||O_1C$ and so O_1O_2BC is a parallelogram (a pair of equal length, parallel sides) and hence O_1O_2 is equal in length to CB. Similarly O_1O_3BA and O_2O_3CA are parallelograms so O_1O_2 and BA are equal in length and O_2O_3 and CA are equal in length. Thus $O_1O_2O_3$ is congruent to ABC since three sides are equal.