Generalised vector products applied to affine and projective rational trigonometries in three dimensions (Part I)


Dr Gennady Arshad Notowidigdo


UNSW Sydney


Thu, 21/03/2019 - 12:00pm


RC-4082, The Red Centre, UNSW


In the first part of a two-part talk, the notion of a generalised vector product in three-dimensional vector space is introduced, where a general non-degenerate symmetric bilinear form now dictates the behaviour of the standard Euclidean vector product, and formalise its properties with respect to the algebra of scalar and vector triple and quadruple products.

 With the non-degenerate symmetric bilinear form equipped to a three-dimensional vector space, known results of Lagrange, Cauchy, Binet and Jacobi are generalised to ensure compatibility with this new framework. This talk is based on joint work with Norman J. Wildberger.

School Seminar Series: