Course Outline

MATH1081

Discrete Mathematics

School of Mathematics and Statistics

Faculty of Science

Term 2, 2019
Contents

1. Staff .. 3
2. Administrative matters .. 3
 Contacting the Student Services Office .. 3
3. Course information .. 4
 Course summary ... 4
 Course aims .. 4
 Course learning outcomes (CLO) ... 4
4. Learning and teaching activities ... 5
 Lecture and Tutorial Schedule ... 5
 Classroom Tutorials ... 5
 Online Tutorials ... 5
 UNSW Moodle ... 5
5. Assessment ... 6
 Assessment overview ... 6
 Weekly Online Tutorials .. 6
 Lab Tests .. 6
 Assignment ... 7
 End of Term Examination .. 7
 Calculator Information ... 7
6. Expectations of students .. 7
 School Policies .. 7
 Academic integrity, referencing and plagiarism .. 8
 University Statement on Plagiarism ... 8
7. Readings and resources ... 9
 Textbook .. 9
 Reference Books ... 9
8. Getting help outside tutorials .. 9
 Staff Consultations .. 9
 Mathematics Drop-in Centre .. 9
 Additional support for students ... 9
9. Special Consideration ... 10
 Important Notes .. 10
10. Syllabus .. 11
11. Problem Sets .. 14
1. Staff

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Email</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Authority</td>
<td>Assoc. Prof Jonathan Kress</td>
<td>j.kress@unsw.edu.au</td>
<td>RC-3073</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dr David Angell</td>
<td>david.angell@unsw.edu.au</td>
<td>RC-5104</td>
</tr>
<tr>
<td>Online Tutorials</td>
<td>Mr Sean Gardiner</td>
<td>sean.gardiner@unsw.edu.au</td>
<td>RC-4105</td>
</tr>
</tbody>
</table>

Staff consultation times are provided on Moodle and in the School of Mathematics and Statistics website for current students, undergraduate, student services, help for student’s page, at the beginning of each term.

Tutor details for all courses will be provided at the start of term in Moodle.

2. Administrative matters

Contacting the Student Services Office

Please visit the School of Mathematics and Statistics website for a wide range of information on School Policies, Forms and Help for Students by visiting the “Student Services” page.

For information on Courses, please go to “Current Student”, “Undergraduate and/or Postgraduate” “Courses Homepage” for information on all course offerings.

The “Student Notice Board” can be located by going to the “Current Students” page; Notices are posted regularly for your information here. Please familiarise yourself with the information found in these locations. The School web page is found: http://www.maths.unsw.edu.au

If you cannot find the answer to your queries on the web pages you are welcome to contact the Student Services Office directly. The First Year Advisor in the Student Services Office is Mrs Markie Lugton. All administrative enquiries concerning first year Mathematics courses should be sent to M Lugton, either:

- By email to ug.mathsstats@unsw.edu.au
- By phone: 9385 7011
- Or in person to the Red Centre building, level 3, room 3072

Change of tutorials, due to timetable clashes or work commitments, advice on course selection and other administrative matters are handled in the Student Services Office. Constructive comments on course improvement may also be emailed to the Director of First Year Mathematics, A/Prof Jonathan Kress. Should we need to contact you, we will use your official UNSW email address of zstudentno@student.unsw.edu.au

in the first instance. It is your responsibility to regularly check your university email account. Please state your student number in all emails to the Student Services Office.
3. Course information

Units of credit: 6

Assumed knowledge: The assumed knowledge for this course is equivalent of a combined mark of at least 100 in the HSC Mathematics and HSC Mathematics Extension 1.

Co-requisite: The formal co-requisite is MATH1131 or MATH1141 or MATH1151. (You must either be taking one of these courses at the same time or have passed one already.)

Teaching times and locations: see the link on the Handbook web page:

The subject matter of this course is very different from “high school mathematics” and success at high school is no guarantee of success in Discrete Mathematics. In MATH1081 emphasis is placed on reasoned argument and clarity of exposition as well as algebraic and computational skills.

Course summary

MATH1081 will enhance your research, inquiry and analytical thinking abilities as it will provide you with the mathematical language and mathematical techniques to unravel many seemingly unrelated problems. The course will engage you in independent and reflective learning through your independent mastery of a wide range of tutorial problems. The mathematical problem-solving skills that you will develop are generic problem solving skills, based on logical arguments and mathematical language that can be applied in multidisciplinary work. You will be encouraged to develop your communication skills through active participation in tutorials, and by writing clear, logical arguments when solving problems.

Course aims

The aim of MATH1081 is that by the time you finish the course you should understand the concepts and techniques covered by the syllabus and have developed skills in applying these concepts and techniques to the solution of appropriate problems. Successful completion of the course will give you a good foundation for understanding many problems that arise many applications and particularly those in computer science.

Course learning outcomes (CLO)

At the successful completion of this course you (the student) should be able to:

1. State definitions and theorems in the syllabus and apply them to specific examples.
2. Apply the concepts and techniques of the syllabus to solve appropriate problems.
3. Communicate mathematical ideas effectively using correct terminology.
4. Use technology as an aid to communicate mathematical ideas.
5. Recognise and create valid mathematical arguments.
4. Learning and teaching activities

Lecture and Tutorial Schedule

Please note that Lectures commence in week 1 and run to week 10 according to your myUNSW timetable. Lectures may continue into week 11 according to need.

<table>
<thead>
<tr>
<th></th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
</table>
| Physical Lectures | 12 to 2 pm
 Physics Theatre
 Angell (w1, 3-11) | 9-11am
 Physics Theatre
 Angell (w1-5, 7-10) | 10-11am
 Burrows Theatre
 Angell (w1-10) |
| Web Lectures | See the Moodle course page to for links to the lecture videos |
| Tutorials | Note: Students must enrol in a pair of tutorials as follows:
 Group A (M15): Monday 3-4pm and Wednesday 11-12pm
 Group B (T10): Tuesday 10-11am and Thursday 10-11am
 Group C (T16): Tuesday 4-5pm and Thursday 4-5pm
 Group D (W14): Wednesday 2-3pm and Friday 1-2pm |

There are 5 hours of lectures per week except in week 6 when there are 3 hours of lectures. Lectures commence in week 1 and run to week 11. Full details of the timetable are shown in your timetable on myUNSW and the online Handbook.

The material presented is divided into five sections or topics and each part will be presented in 2 or 3 week segments as follows:

<table>
<thead>
<tr>
<th>Topics</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>1 to 8</td>
<td>9 to 16</td>
<td>17 to 28</td>
<td>29 to 40</td>
<td>41 to 48</td>
</tr>
</tbody>
</table>

Classroom Tutorials

Each student enrolled in MATH1081 has been assigned two tutorial time slots as shown in your timetable. Students can change their tutorials via myUNSW until the end of week 1. After that time, they can only change tutorials by going to the Student Services Office, Red Centre Building room RC-3072 with evidence of a timetable clash or work commitments. NB: Classroom tutorials commence in week 1 and run until week 10.

Each student will have two tutorials per week with the same tutor, with tutorials starting in week 1 and running until week 10. Attendance at tutorials is compulsory and the roll will be called in tutorials.

Online Tutorials

In addition to the classroom tutorials, MATH1081 has a short weekly set of exercises. These are described below in the Assessment section.

UNSW Moodle

The School of Mathematics and Statistics uses the Learning Management System called Moodle. To log into Moodle, use your zID and zPass at the following URL:

http://moodle.telt.unsw.edu.au

Here you will find announcements, general information, notes, lecture slide, classroom tutorial and
homework problems and links to online tutorial and assessments.

5. Assessment

Assessment overview

The final mark will be made up as follows:

<table>
<thead>
<tr>
<th>Assessment task</th>
<th>Weight</th>
<th>CLOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online tutorials</td>
<td>40%</td>
<td>1,2,5</td>
</tr>
<tr>
<td>Weekly: 10% for best 8 of 10; Lab: 15% each for two tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignment</td>
<td>10%</td>
<td>1,2,3,4,5</td>
</tr>
<tr>
<td>End of term examination</td>
<td>50%</td>
<td>1,2,3,5</td>
</tr>
</tbody>
</table>

To pass this course a student needs final overall mark of at least 50%. There is no requirement to obtain a pass in any one assessment task.

Each type of assessment is described below in detail.

Note:

You will be able to view your final exam timetable on myUNSW. Details of when this timetable will be released is available on the university website.

https://student.unsw.edu.au/dates-and-timetables

Weekly Online Tutorials

Each week there will be online tutorial exercises on Moodle. These exercises may cover material either before or after it is covered in lectures. Instructions will be provided on Moodle. The deadline for each week’s exercises will be 5pm on Sunday at the end of weeks 1 to 10. Your best 8 of the 10 weeks will count towards your final mark.

These online exercises will cover basic skills. The material covered in each can include up-coming topics, as preparation to help you get the most out of lectures and tutorials, as well as material already covered in the lectures and tutorials to help you prepare for the lab tests.

You are encouraged to work on these exercises in groups with other students, but you must only enter answers to your questions that you have worked out for yourself.

The weekly online tutorials allow you to check your answers as you go so you should aim to achieve a near perfect score. You can also repeat these as many times as you like and you may find this useful for practice and revision. After each weekly deadline, a revision version will still be available but will not count towards your final mark.

Lab Tests

As well as completing the weekly online component of the Online Tutorials, you will take two supervised tests based on a similar set of questions. The Lab Test questions will be provided on Moodle for practice at least one week before the beginning of the tests. These tests will be conducted in a Red-Centre lab in week 5 for the first test and week 10 for the second test. You will need to book times for these tests using the link on Moodle.
Assignment

The assignment is designed to help you construct logically correct mathematical arguments and communicate mathematical ideas. Details of the assignment, including assessment criteria will be provided on Moodle. The assignment will be released by Monday of week 5. A draft version of your answers will be due by 5pm on Friday of week 6. You will then review the work of one peer and provide feedback by 5pm on Friday of week 7. Your feedback will be graded by a tutor and this will contribute one third of your assignment mark. You must then submit a final version of your assignment by 5pm Friday of week 8. Which will be graded and contribute two thirds of your assignment mark. A penalty of 10% (ie one 1% of your final mark) will be deducted for each day late for any of the 3 stages.

End of Term Examination

The end of term exam covers material from the whole syllabus. The best guide to the style and level of difficulty is the past exam papers. The course pack contains a book of past exam papers with worked solutions. To see the exact form of the past exam papers, including instructions on the front search for “MATH1081” on the library website. Examination questions are, by their nature, different from short test questions. They may test a greater depth of understanding. The questions will be longer, and sections of the course not covered in other assessments will be examined.

The time and location of the final examination will be available on myUNSW when the final exam timetable is released.

The format of this term’s exam will be the same as for term 1 2019 which was different to previous exams.

The assessment tasks during the term allow repeated attempts over an extended period and resources are available to students attempting these assessments. As a result, students should be aiming for a high mark in the pre-exam assessment and this indicates significant progress towards achieving the learning outcomes of this course. The exam is time limited, allows no resources and has more complex questions. Therefore a high mark in the pre-exam assessment is not always an accurate indication of the final course mark.

Calculator Information

For end of term UNSW exams, students must supply their own calculator. Only calculators on the UNSW list of approved calculators may be used in the end of term exams. Before the exam period, calculators must be given a “UNSW approved” sticker, obtained from the School of Mathematics and Statistics Office, and other student or Faculty centres. The UNSW list of calculators approved for use in end of term exams is available at: https://student.unsw.edu.au/exam-approved-calculators-and-computers

6. Expectations of students

School Policies

The School of Mathematics and Statistics has adopted a number of policies relating to enrolment, attendance, assessment, plagiarism, cheating, special consideration etc. These are in addition to the Policies of The University of New South Wales. Individual courses may also adopt other policies in addition to or replacing some of the School ones. These will be clearly notified in the Course Initial Handout and on the Course Home Pages on the Maths Stats web site.

Students in courses run by the School of Mathematics and Statistics should be aware of the School and Course policies by reading the appropriate pages on the Maths Stats web site starting at:

http://www.maths.unsw.edu.au/currentstudents/assessment-policies

The School of Mathematics and Statistics will assume that all its students have read and understood
the School policies on the above pages and any individual course policies on the Course Initial Handout and Course Home Page. Lack of knowledge about a policy will not be an excuse for failing to follow the procedure in it.

Academic integrity, referencing and plagiarism

Academic integrity is fundamental to success at university. Academic integrity can be defined as a commitment to six fundamental values in academic pursuits: honesty, trust, fairness, respect, responsibility and courage.\(^1\) At UNSW, this means that your work must be your own, and others’ ideas should be appropriately acknowledged. If you don’t follow these rules, plagiarism may be detected in your work.

Further information about academic integrity and plagiarism can be located at:

- The Current Students site https://student.unsw.edu.au/plagiarism, and
- The ELISE training site http://subjectguides.library.unsw.edu.au/elise/presenting

The *Conduct and Integrity Unit* provides further resources to assist you to understand your conduct obligations as a student: https://student.unsw.edu.au/conduct.

University Statement on Plagiarism

This statement has been adapted from statements by the St James Ethics Centre, the University of Newcastle, and the University of Melbourne.

Plagiarism is the presentation of the thoughts or work of another as one’s own. Examples include:

- Direct duplication of the thoughts or work of another, including by copying work, or knowingly permitting it to be copied. This includes copying material, ideas or concepts from a book, article, report or other written document (whether published or unpublished), composition, artwork, design, drawing, circuitry, computer program or software, web site, Internet, other electronic resource, or another person’s assignment without appropriate acknowledgement.
- Paraphrasing another person’s work with very minor changes keeping the meaning, form and/or progression of ideas of the original;
- Piecing together sections of the work of others into a new whole;
- Presenting an assessment item as independent work when it has been produced in whole or part in collusion with other people, for example, another student or a tutor; and,
- Claiming credit for a proportion a work contributed to a group assessment item that is greater than that is actually contributed to.
- Submitting an assessment item that has already been submitted for academic credit elsewhere may also be considered plagiarism.
- The inclusion of the thoughts or work of another with attribution appropriate to the academic discipline does not amount to plagiarism.

Students are reminded of their Rights and Responsibilities in respect of plagiarism, as set out in the University Undergraduate and Postgraduate Handbooks and are encouraged to seek advice from academic staff whenever necessary to ensure they avoid plagiarism in all its forms.

The Learning Centre website is the central University online resource for staff and student information on plagiarism and academic honesty. It can be located at: www.lc.unsw.edu.au/plagiarism

The Learning Centre also provides substantial educational written materials, workshops, and tutorials to aid students, for example, in:

7. Readings and resources

Textbook

Reference Books

For interesting applications within Computer Science, try the three part classic – D.E.Knuth, “The Art of Computer Programming”.

8. Getting help outside tutorials

Staff Consultations
From week 3 there will be a roster which shows for each hour of the week a list of names of members of staff who are available to help students in the first year mathematics courses, no appointment is necessary. This roster is displayed on the same Notice Board as timetables, near the School Office (room 3070, Red Centre), it is also available from the web page:

http://www.maths.unsw.edu.au/currentstudents/consultation-mathematics-staff

Mathematics Drop-in Centre
The Maths Drop-in Centre provides free help to students with certain first and second year mathematics courses. First year courses supported are MATH1011, MATH1081, MATH1131, MATH1231, MATH1241 and MATH1251. The Maths Drop-in Centre is in RC-3064, and opening times during term is from 10am – 12pm and 1 pm to 3pm from Mondays to Fridays. The Maths drop-in centre schedule will be available on the Schools website,

https://www.maths.unsw.edu.au/currentstudents/Mathematics-Drop-in-Centre

by the end of week 1. Please note that no appointment is necessary, this is a drop-in arrangement to obtain one-on-one help from tutors.

Additional support for students

• The Current Students Gateway: https://student.unsw.edu.au/
• Academic Skills and Support: https://student.unsw.edu.au/academic-skills
• Student Wellbeing, Health and Safety: https://student.unsw.edu.au/wellbeing
• Disability Support Services: https://student.unsw.edu.au/disability-services
• UNSW IT Service Centre: https://www.it.unsw.edu.au/students/index.html

9. Special Consideration

Please adhere to the Special Consideration Policy and Procedures provided on the web page below when applying for special consideration.

https://student.unsw.edu.au/special-consideration

Please note that the application is not considered by the Course Authority, it is considered by a centralised team of staff at the Nucleus Student Hub.

The School will contact you (via student email account) after special consideration has been granted to reschedule your missed assessment, for a lab test or paper-based test only.

For applications for special consideration for assignment extensions, please note that the new submission date and/or outcome will be communicated through the special consideration web site only, no communication will be received from the School.

For final exams with special consideration granted, the Exams Unit will email the rescheduled “supplementary exam” date, time and location to your student zID email account directly. Please ensure you regularly check your student email account (zID account) for this information.

The supplementary exam period/dates can be found at this web site:

https://student.unsw.edu.au/exam-dates

Please ensure you are aware of these dates and that you are available during this time.

Important Notes

• If you believe your application for Special Consideration has not been processed, you should email specialconsideration@unsw.edu.au immediately for advice.

• If you suffer from a chronic or ongoing illness that has, or is likely to, put you at a serious disadvantage, then you should contact the Disability Support Services who provide confidential support and advice. Their web site is: https://student.unsw.edu.au/disability

Disability Support Services (DSS) may determine that your condition requires special arrangements for assessment tasks. Once the School has been notified of these, we will make every effort to meet the arrangements specified by DSS.

• Additionally, if you have suffered significant misadventure that affects your ability to complete the course, please contact the Director of First Year, Associate Professor Jonathan Kress by email or in person for advice. The contact details are the Red Centre, level 3 room RC-3073 or by email to j.kress@unsw.edu.au

Professor B Henry
Head, School of Mathematics and Statistics
10. **Syllabus**

References are to the textbook by Epp, unless marked otherwise. F indicates the textbook by Franklin and Daoud and R indicates the book *Discrete Mathematics with Applications* by K.H. Rosen (6th edition). The UNSW Library has multiple copies of Rosen numbered P510/482A,B,C, etc.

The references shown in the righthand column are *not* intended to be a definition of what you will be expected to know. They are just intended as a guide to finding relevant material. Some parts of the course are not covered in the textbooks and some parts of the textbooks (even in sections mentioned in the references below) are not included in the course.

Within sections of the course, the topics may not be covered in exactly the order in which they are listed below.

<table>
<thead>
<tr>
<th>Topic</th>
<th>References A</th>
<th>References B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Sets functions and sequences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sets, subsets, power sets. Equality, cardinality</td>
<td>5.1, 5.3</td>
<td>1.2, 6.1, 6.3</td>
</tr>
<tr>
<td>Set operations: union, intersection, difference, Cartesian product.</td>
<td>5.1</td>
<td>6.1</td>
</tr>
<tr>
<td>Universal sets, complements.</td>
<td>5.2</td>
<td>6.2</td>
</tr>
<tr>
<td>Russell’s paradox.</td>
<td>5.4</td>
<td>6.4</td>
</tr>
<tr>
<td>Functions. Domain, codomain and range. Arrow diagrams.</td>
<td>7.1, 3.5</td>
<td>1.3, 7.1, 4.5</td>
</tr>
<tr>
<td>Ceiling and floor functions. Images and inverse images of sets. Injective (one-to-one), surjective (onto) and bijective functions.</td>
<td>7.3</td>
<td>7.2</td>
</tr>
<tr>
<td>Composition of functions</td>
<td>7.4</td>
<td>7.3</td>
</tr>
<tr>
<td>Inverse functions.</td>
<td>7.2</td>
<td>7.2</td>
</tr>
<tr>
<td>Sequences, sums and products. Notation.</td>
<td>4.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Change of variable in a sum. Telescoping sums</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2: Integers, Modular Arithmetic and Relations

<table>
<thead>
<tr>
<th></th>
<th>References A</th>
<th>References B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prime numbers and divisibility</td>
<td>3.1, 3.3</td>
<td>4.1, 4.3</td>
</tr>
<tr>
<td>Fundamental Theorem of Arithmetic</td>
<td>3.3</td>
<td>4.3</td>
</tr>
<tr>
<td>Euclidean Algorithm</td>
<td>3.8</td>
<td>4.8</td>
</tr>
<tr>
<td>Modular Arithmetic</td>
<td>3.4</td>
<td>4.4, 8.4</td>
</tr>
</tbody>
</table>
Solving Linear Congruences
General Relations
Reflexivity, symmetry and transitivity
Equivalence Relations
Partially ordered sets and Hasse diagrams

3: Logic and Proofs

Proof versus intuition. Direct proof.
Propositions, connectives, compound propositions.
Truth tables. Tautology, contingency, logical equivalence.
Implication, converse, inverse, biconditional.
Rules of inference
Contrapositive, indirect proof, proof by contradiction
Quantifiers
Proof of universal statements, exhaustion, proof by cases.
Negation of quantified statements.
Statements with multiple quantifiers.
Common mistakes in reasoning. Converse and inverse fallacies. Begging the question, tacit assumption, etc.
Mathematical induction

Note: In addition to the sections of Epp mentioned above, sections 4.2–4.5 and 4.7 (3.2–3.5, 3.7 for edition 3) provide many useful worked examples of constructing proofs in elementary number theory.

4: Enumeration and Probability

Counting and Probability
Multiplication Rule
<table>
<thead>
<tr>
<th>Topic</th>
<th>Section(s)</th>
<th>Section(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition Rule</td>
<td>6.3</td>
<td>9.3</td>
</tr>
<tr>
<td>Principle of Inclusion-Exclusion</td>
<td>6.3</td>
<td>9.3</td>
</tr>
<tr>
<td>Pigeonhole Principle</td>
<td>7.3</td>
<td>9.4</td>
</tr>
<tr>
<td>Permutations and Combinations</td>
<td>6.4, 6.5</td>
<td>9.5, 9.6</td>
</tr>
<tr>
<td>Binomial and Multinomial Theorem</td>
<td>6.7, R4.6</td>
<td>9.7, R5.4</td>
</tr>
<tr>
<td>Discrete Probability</td>
<td>R4.4, 6.1</td>
<td>R6.1, 9.1</td>
</tr>
<tr>
<td>Recurrence Relations</td>
<td>8.2, 8.3</td>
<td>5.6, 5.7, 5.8</td>
</tr>
<tr>
<td>Recursively Defined Sets and Functions</td>
<td>8.1</td>
<td>5.9</td>
</tr>
</tbody>
</table>

5: Graphs

Basic terminology. simple graphs, \(K_n \). Directed graphs, subgraphs, complementary graphs. 11.1 10.1

Degree, the Handshaking Theorem (Epp Theorem 10.1.1 (11.1.1 in ed. 3)) 11.1 10.1

Bipartite graphs, \(K_{m,n} \). 11.1 10.1

Adjacency and incidence matrices. 11.3 10.3

Isomorphism, isomorphism invariants. 11.4 10.4

Walks, paths and circuits. Euler and Hamilton paths. Connected graphs, connected components. 11.2 10.2

Trees, spanning trees. 11.5, 11.6 10.5, 10.7

Weighted graphs. Minimal spanning trees. Kruskal and Dijkstra algorithms. 11.6 10.6, 10.7
11. Problem Sets