Course Outline

MATH1231 Mathematics 1B

School of Mathematics and Statistics

Faculty of Science

Term 3, 2019
Contents

1. Staff .. 4
2. Administrative matters ... 4
 Contacting the Student Services Office ... 4
3. Course information .. 5
 Course summary .. 5
 Course aims ... 5
 Course learning outcomes (CLO) ... 5
4. Learning and teaching activities ... 6
 Lectures and Tutorials Schedule ... 6
 Classroom Tutorials .. 6
 Online Tutorials .. 6
 Weekly ... 6
 Lab Tests .. 7
 Maple TA ... 7
5. Assessment ... 7
 Overview ... 7
 Weightings ... 8
 Online Tutorials .. 8
 Assignment .. 9
 End of Term Examination ... 9
 Additional information for MATH1241 Higher Mathematics 1A 9
 Schedule of all assessments ... 10
 Calculator Information ... 10
6. Expectations of students ... 10
 School Policies .. 10
 Academic integrity, referencing and plagiarism .. 11
 University Statement on Plagiarism ... 11
7. Readings and resources ... 12
 Course Pack .. 12
 Textbook ... 12
8. Getting help outside tutorials ... 13
 Staff Consultations .. 13
 Mathematics Drop-in Centre ... 13
 Lab Consultants .. 13
 Additional support for students ... 13
9. Applications for Special Consideration .. 13
 Important Notes .. 15
10. Algebra Syllabus and Lecture timetable (MATH1231/1241) 16
 Extra Algebra Topics for MATH1241 ... 17
 Problem Sets ... 17
Theory in the Algebra Course ..17

11. Calculus syllabus for MATH1231 Mathematics 1B ...18

12. Calculus syllabus for MATH1241 Higher Mathematics 1B ...19

 Problem Sets ..20

13. Computing Information ..20

 Aims ...20

 Computing lab ...20

 Remote access to Maple ..21

 How to start ..21

 Computing syllabus ...21

 Assessment ...21

 Student-owned computers for Mathematics courses ..21

 SOME GREEK CHARACTERS ...23
1. Staff

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Email</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Authority</td>
<td>Assoc. Prof. Jonathan Kress</td>
<td>j.kress@unsw.edu.au</td>
<td>RC-3073</td>
</tr>
<tr>
<td>Algebra Lecturer</td>
<td>Assoc. Prof. Jonathan Kress</td>
<td>j.kress@unsw.edu.au</td>
<td>RC-3073</td>
</tr>
<tr>
<td>Calculus Lecturer</td>
<td>Dr Joshua Capel</td>
<td>j.capel@unsw.edu.au</td>
<td>RC-5107</td>
</tr>
<tr>
<td>Algebra online tutorials</td>
<td>Dr Joshua Capel</td>
<td>j.capel@unsw.edu.au</td>
<td>RC-5107</td>
</tr>
<tr>
<td>Calculus online tutorials</td>
<td>Dr Daniel Mansfield</td>
<td>daniel.mansfield@unsw.edu.au</td>
<td>RC-4070</td>
</tr>
<tr>
<td>Maple coding</td>
<td>Dr Chi Mak</td>
<td>chi.mak@unsw.edu.au</td>
<td>RC-3073</td>
</tr>
</tbody>
</table>

Staff consultation times will be posted on Moodle and on the School of Mathematics and Statistics website on the Current Students > Undergraduate > Student Services > Help for Students page by the end of week 2 each term.

2. Administrative matters

Contacting the Student Services Office

Please visit the School of Mathematics and Statistics website for a wide range of information on School Policies, Forms and Help for Students by visiting the “Student Services” page.

For information on Courses, please go to “Current Student”, “Undergraduate and/or Postgraduate” “Courses Homepage” for information on all course offerings.

The “Student Notice Board” can be located by going to the “Current Students” page; Notices are posted regularly for your information here. Please familiarise yourself with the information found in these locations. The School web page is found: http://www.maths.unsw.edu.au

If you cannot find the answer to your queries on the web pages you are welcome to contact the Student Services Office directly. The First Year Advisor in the Student Services Office is Mrs Markie Lugton. All administrative enquiries concerning first year Mathematics courses should be sent to M Lugton, either:

- By email to ug.mathsstats@unsw.edu.au
- By phone: 9385 7011
- Or in person to the Red Centre building, level 3, room 3072

Change of tutorials, due to timetable clashes or work commitments, permission to take class tests outside your scheduled tutorial, advice on course selection and other administrative matters are handled in the Student Services Office. Constructive comments on course improvement may also be emailed to the Director of First Year Mathematics, A/Prof Jonathan Kress. Should we need to contact you, we will use your official UNSW email address of Zstudentno@unsw.edu.au in the first instance. **It is your responsibility to regularly check your university email account. Please state your student number in all emails to the Student Services Office.**
3. Course information

Units of credit: 6

Pre-requisite(s): For MATH1231 a pass or better is required in MATH1131 or MATH1141. For MATH1241 a credit in MATH1131 or MATH1141 is required.

Exclusions for MATH1231: MATH1021, MATH1031, MATH1241, MATH1251, ECON1202 and ECON2291

Exclusions for MATH1241: MATH1021, MATH1031, MATH1231, MATH1251, ECON1202 and ECON2291

Teaching times and locations: see the central timetable web pages:

Offered in: Terms 1, 2 and 3

Offered in: Term 1 and 2

Course summary

This course will provide you with a good working knowledge of Calculus and Linear Algebra, and show, through the lectures, how this mathematics can be applied in interdisciplinary contexts. Your skills in analytical critical thinking and problem solving will improve because of the illustrative examples used in lectures and because of the problem based tutorial classes. These mathematical problem solving skills, which are based on logical arguments and specific techniques, are generic problem solving skills that can be applied in multidisciplinary work. You will be encouraged to develop your communication skills through active participation in tutorials, and by writing clear, logical arguments when solving problems.

Course aims

The aim of MATH1231/1241 is that by the time you finish the course you should understand the concepts and techniques covered by the syllabus and have developed skills in applying those concepts and techniques to the solution of appropriate problems. You should be able to use technology to aid your mathematical problem solving and communication of mathematical ideas. Successful completion of this course will enable you to understand the mathematics that you will meet in the later years of your program.

Course learning outcomes (CLO)

At the successful completion of this course you (the student) should be able to:

1. State definitions and theorems in the syllabus and apply them to specific examples,
2. Apply the concepts and techniques of the syllabus to solve appropriate problems,
3. Use technology as an aid to solve appropriate problems and communicate mathematical ideas.
4. Communicate mathematical ideas effectively using correct terminology.
5. Apply ideas in the syllabus to unfamiliar contexts,
6. Recognise and create valid mathematical arguments.

In MATH1241 there will be greater emphasis on CLOs 5 and 6 than in MATH1231.
4. Learning and teaching activities

Lectures and Tutorials Schedule

<table>
<thead>
<tr>
<th>MATH1231 Mathematics 1B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
</tr>
<tr>
<td>Lectures Group A</td>
</tr>
<tr>
<td>Tutorials</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Note that in 2019, MATH1241 is only offered in term 2.

Classroom Tutorials

Students in MATH1231 are enrolled in one weekly classroom tutorial. The classroom tutorial will offer both Algebra and Calculus tutorials in alternatively weeks with Algebra in odd weeks and Calculus in even weeks. Attendance is compulsory for all classroom tutorials and a roll will be called at all tutorial classes.

Students can change their tutorial via myUNSW until the end of week 1. After that time, they can only change tutorials by going to the Student Services Office, Red Centre Building room RC-3072 with evidence of a timetable clash or work commitments. NB: Classroom tutorials commence in week 1 and run until week 10.

The time and location of your Classroom Tutorial can be found on myUNSW Handbook timetable (a link is also provided on page 5). The main reason for having Classroom Tutorials is to give you a chance to tackle and discuss problems which you find difficult or don’t fully understand, so it is important to try at least a selection of tutorial problems before attending your class so that you know the questions you would like to ask of your tutor. A schedule of suggested homework problems, to be attempted before your classroom tutorial, will be posted on Moodle. Classroom tutorials will cover Calculus in odd weeks and Algebra in even weeks.

Solving problems and writing mathematics clearly are two separate skills that need to be developed through practice. We recommend that you keep a workbook to practice writing solutions to mathematical problems.

Online Tutorials

Weekly

There is a weekly online tutorial for each week due at 5pm on Monday of the next week. The deadline for the first online tutorial (week 1) is on Monday of Week 2. Each online tutorial will consist of 6 topics so there are 60 topics in total. One topic will consist of a short video or self-paced lesson and some corresponding exercises on Maple TA. There will be at least 25 algebra topics, 25 calculus topics and at least 8 Maple coding topics.

The online tutorials are an integral part of this course. They will help you stay up-to-date with the course content and will give you an alternative view on the course materials. Your best grade from 8 of the 10 online tutorials will be counted towards your final grade. See the “Online Tutorial Lab Test” section for more details.

Note:
• Your work on this must be your own work, but you are encouraged to discuss the methods required with other students.

• Each version of an online tutorial will be slightly different.

• Only a limited number of users can have simultaneous access to Maple TA, so do NOT leave your work on these to the last day when the server may be busy.

• **No deadline extensions will be granted.** You should attempt these tests with sufficient remaining time to allow for unplanned services interruptions.

Lab Tests
As well as completing the weekly online component of the Online Tutorials, you will take two supervised tests based on the same set of questions. These tests will be conducted in a Red-Centre lab RC-M020 in weeks 5 & 9 and are shown in your official timetable as “Other”.

Log in to Moodle to find announcements, general information, notes, lecture slide, classroom tutorial and homework problems and links to online tutorials and assessments.

https://moodle.telt.unsw.edu.au

Maple TA
Online tutorials and online assessments in this course use a system called Maple TA. Information on how to access and use Maple TA is provided on Moodle. **Note that “Maple” and “Maple TA” are different.** Maple is the computer algebra software that you will learn how to use in the Maple coding part of this course, and Maple TA is an online assessment system used in this course for the online tutorials and online assessments.

5. Assessment

Overview
The assessment structure of MATH1131 and MATH1141 may be quite different to high school and other courses that you are used to. It is designed so that students should expect to be close to passing the course before taking the final exam with pre-exam assessment focusing on basic skills and the exam focusing on more advanced skills.

• The Online Tutorials allow answers to be checked while working on them, they are available for an extended period and students can work together, seek help and use any resources they wish. Most students gain a perfect score in these.

• The Lab Tests allow unlimited practice of questions from the actual question bank before the test. A passing student should be aiming to score at least 80% in these.

• The Assignment is available over an extended period and students can work on this with the benefit of all the course resources. A passing student should expect a mark of at least 6 or 7 out of 10 for the Assignment.

• The average mark for pre-exam work is typically well over 40/50.

• The exam focuses on questions that require understanding rather than routine calculation. A student's pre-exam mark is not a good predictor of the exam mark.
Weightings
The final mark will be made up as follows:

<table>
<thead>
<tr>
<th>Assessment task</th>
<th>Weight</th>
<th>Course Learning Outcomes</th>
<th>(MATH1241 only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online tutorials</td>
<td>40%</td>
<td>1, 2, 3, 5, 6</td>
<td></td>
</tr>
<tr>
<td>(Lab Tests 1 and 2: 15% each; Weekly online: 10%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignment</td>
<td>10%</td>
<td>1, 2, 3, 4</td>
<td>5, 6</td>
</tr>
<tr>
<td>End of term exam</td>
<td>50%</td>
<td>All</td>
<td></td>
</tr>
</tbody>
</table>

Each type of assessment is described below in detail.

Note:

- You will be able to view your final exam timetable on myUNSW. Details of when this timetable will be released is available on the university website.

- It is very important that you understand the University’s rules for the conduct of Examinations and the penalties for **Academic Misconduct Guide**. This information can be accessed through myUNSW at:

 https://student.unsw.edu.au/conduct

 In recent years there have been cases where severe penalties have been imposed for misconduct in relation to tests and exams in Maths courses.

- UNSW assesses students under a standards based assessment policy. For how this policy is applied within the School of Mathematics and Statistics, please visit the web site:

- For information on how the School implements special consideration policies for assessments during the term and the final examination, refer to the School’s website:

 https://www.maths.unsw.edu.au/currentstudents/special-consideration-illness-misadventure

Online Tutorials

The Online Tutorials have a weekly component and two supervised tests in the Red-Centre labs based on this and similar material that will also be available online before the tests. The time of these tests is shown in your timetable as “Other”.

The best 8 of the 10 Weekly Online Tutorials will contribute 10% of your final mark and each of the supervised tests will contribute 15%.

The supervised tests will be conducted in a computer lab but for the first of these tests you will not be allowed to use and software such as Maple. For the second test you will need to use Maple to answer some of the questions.

The second test will consist mostly of questions from the Maple coding topics of the Online Tutorials in addition to some algebra and calculus questions.

The Maple coding component of this test will be on the features of Maple which are covered in Chapter 1 and all of Chapter 2 of the First Year Maple Notes and some algebra and calculus questions from the Online Tutorials.

You will NOT need to remember the exact syntax of each command because you will have access to the following resources during the test:

- the First Year Maple Notes (in PDF);
- the self-paced lessons from Moodle; and,
• Maple’s in-built help pages.

You will not have access any algebra or calculus notes or to the internet during the test.

All of the possible test problems are provided in your MATH1231 Maple TA classes. There you will also find a practice test with the same format as the actual Online Tutorial Lab Tests. You are allowed an unlimited number of attempts at the practice tests.

You are expected to have worked out exactly how to answer the questions before you attend the tests because you are allowed unlimited practice at the actual test questions, and you can view your results for these tests in the Maple TA gradebook.

Assignment

The purpose of the assignment is to improve your mathematical writing by providing feedback on your writing and helping you to recognise good mathematical writing. It will also give you practice at presenting solutions to exam style questions.

The questions will be presented to you on Maple TA and you will write solutions to these questions. You will be able to check the correctness some parts of your answer using Maple TA so your main task will be to present your answers well with good explanations of your working.

Your work will need to be typed (not hand written and scanned) and you will submit your work online through links on Moodle. The assignment deadline will be 5pm on Friday of week 7. A penalty of 10% per week day late will be applied to late submissions.

Complete details of the process for this will be provided when the assignment is released.

End of Term Examination

The final exam covers material from the whole of the algebra, calculus and computing (Maple) syllabi. The best guide to the style and level of difficulty is the past exam papers. The course pack contains a book of past exam papers with worked solutions. To see the exact form of the past exam papers, including instructions on the front cover and the tables of integrals and standard normal probabilities that are provided, search for “MATH1231” or “MATH1241” on the library website. Examination questions are, by their nature, different from short test questions. They may test a greater depth of understanding. The questions will be longer, and sections of the course not covered in other assessments will be examined. The end of term exam may contain some sub-questions requiring knowledge of Maple.

The format of this term’s exam will be the same as for terms 1 and 2 in 2019 which was different to previous exams.

The assessment tasks during the term allow repeated attempts over an extended period and resources are available to students attempting these assessments. As a result, students should be aiming for a high mark in the pre-exam assessment and this indicates significant progress towards achieving the learning outcomes of this course. The exam is time limited, allows no resources and has more complex questions. Therefore a high mark in the pre-exam assessment is not always an accurate indication of the final course mark.

Additional information for MATH1241 Higher Mathematics 1A

Content: Higher Mathematics 1A includes everything which is in the MATH1231 course and this accounts for 85% of the content of the higher course. The remaining time is spent treating some of the common topics in greater depth and covering some extra topics. The assessment in MATH1241 has a greater emphasis on proof and abstraction and covers a wider range of examples. The syllabus sections of this booklet indicate the additional topics for MATH1241.

Problem sets: The basic problem sets for MATH1241 are the same for MATH1231, but you should pay special attention to the problems labelled [H] and [X] because they are particularly intended for the Higher course. It is
also important to work through all the [R] labelled questions to make sure you get adequate practice on more routine problems.

Assessment: In terms were both MATH1231 and MATH1241 are offered, marks in Higher Mathematics 1B will be moderated so that students in the higher course MATH1241 are not at any disadvantage compared to students in the ordinary course MATH1231. The final examination will contain at least one question in common between the two courses so that student achievement in the two courses can be compared.

Schedule of all assessments

Lectures and tutorials run during weeks 1 to 10. The table below gives the schedule all assessments. Each Weekly Online Tutorial is due at the end of the week shown.

<table>
<thead>
<tr>
<th>Week</th>
<th>Assignment/lab tests</th>
<th>Weekly Online Tutorials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td></td>
<td>Start work on your Online Tutorial</td>
</tr>
<tr>
<td>Week 2</td>
<td></td>
<td>Online Tutorial 1 due Monday 5pm</td>
</tr>
<tr>
<td>Week 3</td>
<td></td>
<td>Online Tutorial 2 due Monday 5pm</td>
</tr>
<tr>
<td>Week 4</td>
<td></td>
<td>Online Tutorial 3 due Monday 5pm</td>
</tr>
<tr>
<td>Week 5</td>
<td>Online Tutorial Lab Test 1</td>
<td>Online Tutorial 4 due Monday 5pm</td>
</tr>
<tr>
<td></td>
<td>(refer to “Other” class scheduled)</td>
<td></td>
</tr>
<tr>
<td>Week 6</td>
<td></td>
<td>Online Tutorial 5 due Monday 5pm</td>
</tr>
<tr>
<td>Week 7</td>
<td>Assignment due Friday 17:00</td>
<td>Online Tutorial 6 due Monday 5pm</td>
</tr>
<tr>
<td>Week 8</td>
<td></td>
<td>Online Tutorial 7 due Monday 5pm</td>
</tr>
<tr>
<td>Week 9</td>
<td>Online Tutorial Lab Test 2</td>
<td>Online Tutorial 8 due Monday 5pm</td>
</tr>
<tr>
<td></td>
<td>(refer to “Other” class scheduled)</td>
<td></td>
</tr>
<tr>
<td>Week 10</td>
<td></td>
<td>Online Tutorial 9 due Monday 5pm</td>
</tr>
<tr>
<td>Week 11</td>
<td></td>
<td>Online Tutorial 10 due Monday 5pm</td>
</tr>
<tr>
<td></td>
<td>Study break</td>
<td></td>
</tr>
<tr>
<td></td>
<td>End of term examination – check UNSW exam timetable for details</td>
<td></td>
</tr>
</tbody>
</table>

Calculator Information

For end of term UNSW exams, students must supply their own calculator. Only calculators on the UNSW list of approved calculators may be used in the end of term exams. Before the exam period, calculators must be given a "UNSW approved" sticker, obtained from the School of Mathematics and Statistics Office, and other student or Faculty centres. The UNSW list of calculators approved for use in end of term exams is available at:

6. Expectations of students

School Policies

The School of Mathematics and Statistics has adopted a number of policies relating to enrolment, attendance, assessment, plagiarism, cheating, special consideration etc. These are in addition to the Policies of The University of New South Wales. Individual courses may also adopt other policies in addition to or replacing
some of the School ones. These will be clearly notified in the Course Initial Handout and on the Course Home Pages on the Maths Stats web site.

Students in courses run by the School of Mathematics and Statistics should be aware of the School and Course policies by reading the appropriate pages on the Maths Stats web site starting at:

https://www.maths.unsw.edu.au/currentstudents/assessment-policies

The School of Mathematics and Statistics will assume that all its students have read and understood the School policies on the above pages and any individual course policies on this Course Outline and Course Home Page. Lack of knowledge about a policy will not be an excuse for failing to follow the procedure in it.

Academic integrity, referencing and plagiarism

Academic integrity is fundamental to success at university. Academic integrity can be defined as a commitment to six fundamental values in academic pursuits: honesty, trust, fairness, respect, responsibility and courage.¹ At UNSW, this means that your work must be your own, and others’ ideas should be appropriately acknowledged. If you don’t follow these rules, plagiarism may be detected in your work.

Further information about academic integrity and plagiarism can be located at:

- The Current Students web pages:
 https://www.maths.unsw.edu.au/currentstudents/current-students
- The ELISE training webpages:
 http://subjectguides.library.unsw.edu.au/elise
- The Conduct and Integrity Unit provides further resources to assist you to understand your conduct obligations as a student:
 https://student.unsw.edu.au/conduct

University Statement on Plagiarism

This statement has been adapted from statements by the St James Ethics Centre, the University of Newcastle, and the University of Melbourne.

Plagiarism is the presentation of the thoughts or work of another as one's own. Examples include:

- Direct duplication of the thoughts or work of another, including by copying work, or knowingly permitting it to be copied. This includes copying material, ideas or concepts from a book, article, report or other written document (whether published or unpublished), composition, artwork, design, drawing, circuitry, computer program or software, web site, Internet, other electronic resource, or another person's assignment without appropriate acknowledgement
- Paraphrasing another person's work with very minor changes keeping the meaning, form and/or progression of ideas of the original;
- Piecing together sections of the work of others into a new whole;
- Presenting an assessment item as independent work when it has been produced in whole or part in collusion with other people, for example, another student or a tutor; and,
- Claiming credit for a proportion a work contributed to a group assessment item that is greater than that actually contributed.
- Submitting an assessment item that has already been submitted for academic credit elsewhere may also be considered plagiarism.
- The inclusion of the thoughts or work of another with attribution appropriate to the academic discipline does not amount to plagiarism.

Students are reminded of their Rights and Responsibilities in respect of plagiarism, as set out in the University Undergraduate and Postgraduate Handbooks and are encouraged to seek advice from academic staff whenever necessary to ensure they avoid plagiarism in all its forms.

The Learning Centre website is the central University online resource for staff and student information on plagiarism and academic honesty. It can be located at:

The Learning Centre also provides substantial educational written materials, workshops, and tutorials to aid students, for example, in:
- Correct referencing practices;
- Paraphrasing, summarising, essay writing, and time management;
- Appropriate use of, and attribution for, a range of materials including text, images, formulae and concepts.

Individual assistance is available on request from The Learning Centre.

Students are also reminded that careful time management is an important part of study and one of the identified causes of plagiarism is poor time management. Students should allow sufficient time for research, drafting, and the proper referencing of sources in preparing all assessment items.

7. Readings and resources

Course Pack

Your course pack should contain the following three items:

1. Algebra Notes (for MATH1231/1241)
2. Calculus Notes (for MATH1231/1241)
3. Past Exam Papers Booklet

A printed version of the course pack can be purchased from the bookshop. These items can also be downloaded from UNSW Moodle but many students find the hardcopy more efficient for study.

NB: The Course Outline can be downloaded from Moodle or the School website only.

Information on administrative matters, lectures, tutorials, assessment, syllabuses, class tests, computing, special consideration and additional assessment.

Textbook

Note, the 10th Edition of the textbook above comes with access to the electronic resources known as WileyPlus. This electronic version provides internet access to the textbook, problems, worked solutions, test (for self-assessment) and other electronic resources related to the text material. If purchased from the UNSW Bookshop, you will have access to the WileyPlus server for one year; it is possible to renew the web access on a yearly basis or for one year, at a fee determined by the publisher. Note that these WileyPlus electronic resources are provided by the publisher John Wiley, and not by the School of Mathematics and Statistics. Any difficulty that you might experience with WileyPlus must be resolved with the publisher.
8. Getting help outside tutorials

Staff Consultations
From week 2 there will be a roster which shows for each hour of the week a list of names of members of staff who are available to help students in the first year mathematics courses, no appointment is necessary. This roster is displayed on various notice board on level 3 of the Red-Centre, the School's website and the Moodle course page.

Mathematics Drop-in Centre
The Maths drop-in centre provides free help to students with certain first and second year mathematics courses. First year courses supported are all first year MATH courses except for MATH1041 are supported. The Maths drop-in centre office is in RC-3064, and opening times during term is typically 10am to 3pm from Mondays to Fridays. The Maths drop-in centre schedule will be available on the Schools website and Moodle by the end of week 1. Please note that no appointment is necessary, this is a drop-in arrangement to obtain one-on-one help from tutors.

Lab Consultants
For help with the Maple computing component of the first year courses, consultants will be available in the Red Centre lab RC-G012B from 11am to 4pm each teaching day in weeks 1 to 9. For more details, visit website: https://www.maths.unsw.edu.au/currentstudents/maple-lab-consultants

Additional support for students
- The Current Students Gateway:
- Academic Skills and Support:
- Student Wellbeing, Health and Safety: https://student.unsw.edu.au/wellbeing
- Disability Support Services:
- UNSW IT Service Centre:

9. Applications for Special Consideration

Please adhere to the Special Consideration Policy and Procedures provided on the web page below when applying for special consideration.

https://student.unsw.edu.au/special-consideration

Please note that the application is not considered by the Course Authority, it is considered by a centralised team of staff at the Nucleus Student Hub.

The School will contact you (via student email account) after special consideration has been granted to reschedule your missed assessment, for a lab test or paper-based test only.

For applications for special consideration for assignment extensions, please note that the new submission date and/or outcome will be communicated through the special consideration web site only, no communication will be received from the School.
For final exams with special consideration granted, the Exams Unit will email the rescheduled “supplementary exam” date, time and location to your student zID email account directly. Please ensure you regularly check your student email account (zID account) for this information.

The supplementary exam period/dates can be found at this web site:

https://student.unsw.edu.au/exam-dates

Please ensure you are aware of these dates and that you are available during this time.
Important Notes

- If you believe your application for Special Consideration has not been processed, you should email specialconsideration@unsw.edu.au immediately for advice.

- If you suffer from a chronic or ongoing illness that has, or is likely to, put you at a serious disadvantage, then you should contact the Disability Support Services who provide confidential support and advice. Their web site is: https://student.unsw.edu.au/disability

Disability Support Services (DSS) may determine that your condition requires special arrangements for assessment tasks. Once the School has been notified of these, we will make every effort to meet the arrangements specified by DSS.

- Additionally, if you have suffered significant misadventure that affects your ability to complete the course, please contact the Director of First Year, Associate Professor Jonathan Kress by email or in person for advice. The contact details are the Red Centre, level 3 room RC-3073 or by email to j.kress@unsw.edu.au

Professor B Henry
Head, School of Mathematics and Statistics
10. Algebra Syllabus and Lecture timetable (MATH1231/1241)

The algebra course for both MATH1231 and MATH1241 is based on chapters 6 to 9 of the Algebra Notes. Lecturers will not cover all of the material in these notes in their lectures as some sections of the notes are intended for reference and for background reading.

The following timetable is the basic timetable and syllabus which will be followed by MATH1231 algebra lecturers. MATH1241 lecturers will include extra material in their lectures. Lecturers will try to follow this timetable, but some variations are inevitable.

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topics</th>
<th>Algebra Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Chapter 6. Vector Spaces</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction to vector spaces and examples of vector spaces.</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Properties of vector arithmetic.</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Subspaces.</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>Linear combinations and spans.</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>Linear independence.</td>
<td></td>
</tr>
<tr>
<td>6.6</td>
<td>Basis and dimension.</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 7. Linear Transformations

The basic aims of this section are to introduce the general theory of linear transformations, to give some geometric applications of linear transformations and to establish the close relationship between linear functions and matrices.

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topics</th>
<th>Algebra Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1, 7.2</td>
<td>Introduction to linear maps. Linear maps and the matrix equations</td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>Geometrical examples.</td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td>Subspaces associated with linear maps.</td>
<td></td>
</tr>
<tr>
<td>7.4.3, 7.5</td>
<td>Rank, nullity and solutions of (Ax = b). Further applications.</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 8. Eigenvectors and Eigenvalues

The aims of this section are to introduce the ideas of eigenvalue and eigenvector and to show some applications of these ideas to diagonalization of matrices, evaluation of powers of matrices and solution of simple systems of linear differential equations. Examples will be restricted to 2 \(\times\) 2 matrices and very simple 3 \(\times\) 3 matrices.

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topics</th>
<th>Algebra Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Definition, examples and geometric interpretation of eigenvalues and eigenvectors.</td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>Eigenvectors, bases and diagonalization of matrices.</td>
<td></td>
</tr>
<tr>
<td>8.3</td>
<td>Applications to powers of matrices.</td>
<td></td>
</tr>
<tr>
<td>8.3</td>
<td>Solution of systems of linear differential equations.</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 9. Probability and Statistics

The main objective of this section is to introduce some of the ideas in mathematical probability and apply these concepts to discrete and continuous valued random variables and their associated probability distributions. The main distributions studied are the binomial and geometric in the discrete case, and the normal distribution in the continuous case. These are applied to solving a range of problems.
Revision of set theory and mathematical probability. 9.1, 9.2.1, 9.2.2

Conditional probability, Bayes’ rule, statistical independence. 9.2.3, 9.2.4

Random variables, discrete random variables, mean of a discrete random variable. 9.3.1, 9.3.2

Variance of discrete random variable, special distributions, the binomial distribution. 9.3.2, 9.4.1

Geometric distribution, sign test. 9.4.2, 9.4.3

Continuous random variables. 9.5

The Normal distribution, approximations to the binomial distribution. 9.6

Extra Algebra Topics for MATH1241

The extra topics in the MATH1241 syllabus, marked [X] in the notes, will be selected from the following:

Vector spaces. Matrices, polynomials and real-valued functions as vector spaces. (6.8). Coordinate vectors (6.7). The theoretical treatment of vector spaces in MATH1241 will be at a slightly more sophisticated level than that in MATH1231.

Linear transformations. Linear maps between polynomial and real-valued function vector spaces (7.5). Matrix representations for non-standard bases in domain and codomain (7.6). Matrix arithmetic and linear maps (7.7). Injective, surjective and bijective linear maps (7.8). Proof the rank nullity theorem (7.9).

Eigenvalues and eigenvectors. Markov Chain Processes (8.3.3). Eigenvalues and eigenvectors for symmetric matrices and applications to conic sections.

Probability and statistics. The Exponential distribution. (9.6.2).

Problem Sets

At the end of each chapter there is a set of problems. Some of the problems are very easy, some are less easy but still routine and some are quite hard. To help you decide which problems to try first, each problem is marked with an [R], and [H] or an [X]. The problems marked [R] form a basic set of problems which you should try first. Problems marked [H] are harder and can be left until you have done the problems marked [R]. Problems marked with [V] have a video solution available via Moodle. You do need to make an attempt at the [H] problems because problems of this type will occur on tests and in the exam. If you have difficulty with the [H] problems, ask for help in your tutorial.

The problems marked [X] are intended for students in MATH1241 – they relate to topics which are only covered in MATH1241. Extra problem sheets for MATH1241 may be issued in lectures.

Questions marked with a [V] have a video solution available from the course page for this subject on Moodle.

Theory in the Algebra Course

The theory is regarded as an essential part of this course and it will be examined both in class tests and in the end of year examination.

You should make sure that you can give DEFINITIONS of the following ideas:

Chapter 6. Subspace of a vector space, linear combination of a set of vectors, span of a set of vectors, linear independence of a set of vectors, spanning set for a vector space, basis for a vector space, dimension of a vector space.

Chapter 7. Linear function, kernel and nullity of a linear function, image and rank of a linear function.
Chapter 8. Eigenvalue and eigenvector, diagonalizable matrix.

Chapter 9. Probability, statistical independence, conditional probability, discrete random variable, expected value (mean) of a random variable, variance of a random variable, binomial distribution, geometric distribution.

You should be able to give STATEMENTS of the following theorems and propositions.

Chapter 6. Theorem 1 of §6.3, Propositions 1 and 3 and Theorem 2 of §6.4, Proposition 1 and Theorems 2, 3, 4, 5 and 6 of §6.6.

Chapter 7. Theorem 2, 3, and 4 of §7.1, Theorem 1 and 2 of §7.2, Proposition 7 and Theorems 1, 5, 8, 9 and 10 of §7.4.

Chapter 8. Theorems 1, 2 and 3 of §8.1, Theorem 1 and 2 of §8.2.

You should be able to give PROOFS of the following theorems and propositions.

Chapter 6. Theorem 2 of §6.4, Theorems 2 and 3 of §6.5, Theorem 2 of §6.6.

Chapter 7. Theorem 2 of §7.1, Theorem 1 of §7.2, Theorems 1, 5 and 8 of §7.4.

Chapter 8. Theorem 1 of §8.1.

11. Calculus syllabus for MATH1231 Mathematics 1B

In this syllabus, the references to the textbook are not intended as a definition of what you will be expected to know. They are just a guide to finding the relevant material. Some parts of the subject are not covered in the textbook and some parts of the textbook (even in the sections mentioned in the references below) are not included in the subject. The scope of the course is defined by the content of the lectures and problem sheets. The approximate lecture time for each section is given below. References to the 8th and 10th editions of Salas & Hills are shown as SH8 and SH10.

<table>
<thead>
<tr>
<th>Section</th>
<th>SH8</th>
<th>SH10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Functions of several variables. (3 hours)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contours and level curves, partial derivatives.</td>
<td>14.1-14.4</td>
<td>15.1-15.4</td>
</tr>
<tr>
<td>Mixed derivative theorem, increment estimation.</td>
<td>14.6</td>
<td>15.6</td>
</tr>
<tr>
<td>Chain rules, tangent planes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Integration techniques. (4 hours)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigonometric integrals and reduction formulae.</td>
<td>8.3</td>
<td>8.3</td>
</tr>
<tr>
<td>Trigonometric and hyperbolic substitutions.</td>
<td>8.4</td>
<td>8.4</td>
</tr>
<tr>
<td>Rational functions and partial fractions.</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>Further substitutions.</td>
<td>8.6</td>
<td>8.6</td>
</tr>
<tr>
<td>3. Ordinary differential equations. (6 hours)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particular, general, explicit and implicit solutions.</td>
<td>18.1</td>
<td></td>
</tr>
<tr>
<td>1st order equations; separable, linear, exact.</td>
<td>8.9, 18.2, 15.9</td>
<td>9.1, 9.2, 19.1, 19.2</td>
</tr>
<tr>
<td>Modelling with odes</td>
<td></td>
<td>9.1, 9.2</td>
</tr>
<tr>
<td>2nd order linear equations with constant coeffts:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homogeneous, non-homogeneous (undetermined coeffts).</td>
<td>18.3, 18.4</td>
<td>9.3, 19.4</td>
</tr>
<tr>
<td>4. Taylor series. (7 hours)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taylor polynomials, Taylor’s theorem.</td>
<td>11.5</td>
<td>12.6, 12.7</td>
</tr>
<tr>
<td>Application to stationary points.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequences: convergence and divergence; combination of sequences.</td>
<td>10.2, 10.3</td>
<td>11.2-11.4</td>
</tr>
<tr>
<td>Series: partial sums; convergence; kth term test for divergence;</td>
<td>11.1, 11.2</td>
<td>12.1, 12.2</td>
</tr>
</tbody>
</table>
11. Sequence and Series

- **Integral, comparison and ratio tests:**
 - 11.1-11.3 12.3, 12.4
- **Alternating series (Leibniz' test):**
 - 11.4 12.5
- **Taylor and Maclaurin series:**
 - 11.6 12.7
 - **Power series:** radius and interval
 - 11.7, 11.8 12.8, 12.9
- **Rearrangement of series:**
- **Power series:** radius and interval
 - 11.7, 11.8 12.8, 12.9
- **Operations on power series:**

5. Application of Integration

- **Average value of a function:**
 - 5.8 5.9
- **Arc length:**
 - 9.8 10.7
- **Area of surfaces of revolution:**
 - 9.9 10.8

12. Calculus Syllabus for MATH1241 Higher Mathematics 1B

In this syllabus, the references to the textbook are **not** intended as a definition of what you will be expected to know. They are just a guide to finding the relevant material. Some parts of the subject are not covered in the textbook and some parts of the textbook (even in the sections mentioned in the references below) are not included in the subject. The scope of the course is defined by the content of the lectures and problem sheets. The approximate lecture time for each section is given below. References to the 8th and 10th editions of Salas & Hills are shown as SH8 and SH10 and references to *Calculus* by M. Spivak under Sp.

<table>
<thead>
<tr>
<th>Section</th>
<th>SH8</th>
<th>SH10</th>
<th>Sp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Functions of several variables. (3 hours)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contours and level curves, partial derivatives.</td>
<td>14.1-14.4</td>
<td>15.1-15.4</td>
<td></td>
</tr>
<tr>
<td>Mixed derivative theorem, increment estimation.</td>
<td>14.6</td>
<td>15.6</td>
<td></td>
</tr>
<tr>
<td>Chain rules, tangent planes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Integration techniques. (4 hours)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigonometric integrals and reduction formulae.</td>
<td>8.3</td>
<td>8.3</td>
<td>18</td>
</tr>
<tr>
<td>Trigonometric and hyperbolic substitutions.</td>
<td>8.4</td>
<td>8.4</td>
<td>18</td>
</tr>
<tr>
<td>Rational functions and partial fractions.</td>
<td>8.5</td>
<td>8.5</td>
<td>18</td>
</tr>
<tr>
<td>Further substitutions.</td>
<td>8.6</td>
<td>8.6</td>
<td>18</td>
</tr>
<tr>
<td>3. Ordinary differential equations. (6 hours)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial, general, explicit and implicit solutions.</td>
<td>18.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st order equations: separable, linear, exact.</td>
<td>8.9, 18.2</td>
<td>9.1, 9.2, 15.9</td>
<td>19.1, 19.2</td>
</tr>
<tr>
<td>Modelling with odes</td>
<td></td>
<td>9.1, 9.2</td>
<td></td>
</tr>
<tr>
<td>2nd order linear equations with constant coeffts: homogeneous, non-homogeneous (undetermined coeffts).</td>
<td>18.3, 18.4</td>
<td>9.3, 19.4</td>
<td></td>
</tr>
<tr>
<td>4. Taylor series. (7 hours)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taylor polynomials, Taylor's theorem.</td>
<td>11.5</td>
<td>12.6, 12.7</td>
<td></td>
</tr>
<tr>
<td>Application to stationary points.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequences: convergence and divergence; combination of sequences.</td>
<td>10.2, 10.3</td>
<td>11.2-11.4</td>
<td>21</td>
</tr>
<tr>
<td>Upper, lower bounds, sup and inf, bounded monotonic sequences.</td>
<td>10.1-10.3</td>
<td>11.1</td>
<td>8, 21</td>
</tr>
<tr>
<td>Recursively defined sequences.</td>
<td>10.2</td>
<td>11.1</td>
<td></td>
</tr>
<tr>
<td>Series: partial sums; convergence; kth term test for divergence; comparison, integral, ratio and root tests;</td>
<td>11.1-11.3</td>
<td>12.3, 12.4</td>
<td>22</td>
</tr>
</tbody>
</table>
alternating series (Leibniz’ test);
absolute and conditional convergence;
rearrangement of series.
Taylor and Maclaurin series.

Power series: radius and interval
of convergence; operations on power series.

5. **Applications of integration.** (3 hours)
 - Average value of a function.
 - Arc length in Cartesian and polar coordinates.
 - Area of surfaces of revolution.

<table>
<thead>
<tr>
<th></th>
<th>5.8</th>
<th>5.9</th>
<th>9.5</th>
<th>9.8</th>
<th>10.7</th>
<th>9.9</th>
<th>10.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average value of a function.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arc length in Cartesian and polar coordinates.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area of surfaces of revolution.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Problem Sets

The Calculus problems are located at the end of each chapter in the Calculus Notes Booklet. To help you decide which problems to try first, each problem is marked with an [R], and [H] or a [HH]. A few problems are marked with an [X] for MATH1241 students.

All students should make sure that they attempt the questions marked [R]. The problems marked [H] or [HH] are intended as a challenge for students in MATH1231 as well as MATH1241. Some harder parts of [R] problems are marked with a star. Any problems which depend on work covered only in MATH1241 are marked [X]. Problems marked with [V] have a video solution available on Moodle.

13. Computing Information

Aims

The aim of the Computing component is twofold.

- Firstly, you will use the Symbolic Computing Package called Maple to do some mathematics on the computer. This use of Maple is integrated with the Algebra and Calculus and is designed to enhance your understanding of the mathematics involved, as well as letting you use Maple as a tool to do the mathematics. You will find the skills you acquire and things you learn useful in many other subjects you study, both within and outside the School of Mathematics. Maple enables you to tackle larger, harder and more realistic mathematical problems as it can handle all the difficult algebra and calculus for you. Furthermore, learning some Maple introduces you to some of the basic ideas in computer programming.

- Secondly, you will gain some experience in teaching yourself how to use a complicated computing package. This is a skill that will be needed in other courses at UNSW and in the workforce.

Computing lab

The main computing laboratory is Room G012 of the Red Centre. You can get to this lab by entering the building through the main entrance to the School of Mathematics (on the Mezzanine Level) and then going down the stairs to the Ground Level. A second smaller lab is Room M020, on the mezzanine level of the Red Centre.

For the computers in the school laboratories, your login ID is “z” followed immediately by your seven digit student number and your password is your zPass, issued to you at enrolment. If you have difficulties logging in, the computers will allow a five minute login with ID “new user” and password “new user” where you can access https://idm.unsw.edu.au and reset or unlock your zPass. Be aware that two consecutive failed login attempts will lock you out of the computing system for 30 minutes, or until you reset or unlock your zPass.

For more information on the Red-Centre labs, including opening hours, see https://www.maths.unsw.edu.au/currentstudents/computing-facilities
Remember that there will always be unscheduled periods when the computers are not working because of equipment problems and that this is not a valid excuse for not completing tests on time.

Remote access to Maple

Maple is available for Windows, Mac and Linux however, these are not free. UNSW provides a cloud based virtual version of Maple that students in first year mathematics courses can access on their laptop. For details see the myAccess website:
https://www.myaccess.unsw.edu.au/

How to start

The computing (Maple) component of MATH1231/1241 follows on from the computing component in MATH1131/1141. The introductory materials from MATH1131/1141 will be provided on Moodle for revision if you need them.

As in term 1, you must complete the Declaration on Maple TA before you can access the Maple Online Tests.

From week 1 onwards, you are expected to master Chapter 1 and all of the remaining sections of Chapter 2 in the First Year Maple Notes by completing the self-contained Maple learning modules and by obtaining help, if necessary, from the Consultants who will be available in Room G012 from 11am to 4pm each weekday of weeks 1 to 9.

Computing syllabus

The Maple computing component is taught via a series of self-paced modules located in UNSW Moodle You are expected to work steadily through these modules, completing the quiz at the end of each module before moving on to the next module. These are incorporated into the Online Tutorials.

The online teaching package consists of the following modules:

- **Module 8: Functions of Two or More Variables**
- **Module 9: Further Calculus**
- **Module 10: Further Linear Algebra**
- **Module 11: 3D Geometry**
- **Module 12: Programming in Maple**

Assessment

During the term, the assessment for the Computing Component (Maple Coding) of the course is embedded in the Online Tutorials. See that section for more information.

The assessment in the Computing Component is linked to topics in algebra and calculus so knowledge of other parts of the course is required.

Finally, the end of term exam may contain one or two sub-questions requiring knowledge of Maple.

Dr Chi Mak (Room: Red Centre 4073)
Lecturer-in-Charge, First Year Computing

Student-owned computers for Mathematics courses

The School of Mathematics and Statistics is committed to providing, through its own laboratories, all the computing facilities which students need for courses taught by the School. No student should feel the need to buy their own computer in order to undertake any Mathematics course. Nevertheless, the following information is provided for the benefit of those who may wish to use their own computer for work associated with Mathematics courses.
All of our courses have a UNSW Moodle presence, and it is there you should look for course materials or links unless your lecturer tells you otherwise. UNSW Moodle may be accessed from any computer with internet access; see their help files and pages for technical requirements and how to check whether your web browser is supported.

The School of Mathematics and Statistics provides assistance to students using teaching software in its laboratories. It does not have the resources to advise or assist students in the use of home computers or in communication between home computers and university facilities.
SOME GREEK CHARACTERS

Listed below are the Greek characters most commonly used in mathematics.

<table>
<thead>
<tr>
<th>Name</th>
<th>Lower case</th>
<th>Upper case</th>
<th>Name</th>
<th>Lower case</th>
<th>Upper case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha</td>
<td>α</td>
<td></td>
<td>Nu</td>
<td>ν</td>
<td></td>
</tr>
<tr>
<td>Beta</td>
<td>β</td>
<td></td>
<td>Xi</td>
<td>ξ</td>
<td></td>
</tr>
<tr>
<td>Gamma</td>
<td>γ</td>
<td>Γ</td>
<td>Pi</td>
<td>π</td>
<td>Π</td>
</tr>
<tr>
<td>Delta</td>
<td>δ</td>
<td>Δ</td>
<td>Rho</td>
<td>ρ</td>
<td></td>
</tr>
<tr>
<td>Epsilon</td>
<td>ε</td>
<td></td>
<td>Sigma</td>
<td>σ</td>
<td>Σ</td>
</tr>
<tr>
<td>Zeta</td>
<td>ζ</td>
<td></td>
<td>Tau</td>
<td>τ</td>
<td></td>
</tr>
<tr>
<td>Eta</td>
<td>η</td>
<td></td>
<td>Phi</td>
<td>φ or ϕ</td>
<td>Φ</td>
</tr>
<tr>
<td>Theta</td>
<td>θ</td>
<td>Θ</td>
<td>Chi</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Kappa</td>
<td>κ</td>
<td></td>
<td>Psi</td>
<td>ψ</td>
<td>Ψ</td>
</tr>
<tr>
<td>Lambda</td>
<td>λ</td>
<td>Λ</td>
<td>Omega</td>
<td>ω</td>
<td>Ω</td>
</tr>
<tr>
<td>Mu</td>
<td>μ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>