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Maximum-norm error analysis of a numerical solution via

Laplace transformation and quadrature of a fractional order

evolution equation
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In a previous paper, McLean and Thomée (to appear), we studied three numerical methods
for the discretization in time of a fractional order evolution equation, in a Banach space
framework. Each of the methods applied a quadrature rule to a contour integral representation
of the solution in the complex plane, where for each quadrature point an elliptic boundary
value problem had to be solved to determine the value of the integrand. The first two methods
involved the Laplace transform of the forcing term, but the third did not. We analysed both
the quadrature error and the error arising from a spatial discretization by finite elements,
measured in the L2-norm. The present work extends our earlier results by proving error
bounds in the technically more complicated case of the maximum-norm. We also establish
new regularity properties for the exact solution, needed for our analysis.
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1. Introduction

We shall consider numerical methods for an initial-value problem of the form

∂tu+ JαAu = f(t) for t > 0, with u(0) = u0, (1.1)

where ∂t = ∂/∂t, A = −∆, with ∆ the Laplacian under homogeneous Dirichlet boundary
conditions in a convex bounded domain Ω ⊂ R

d with smooth boundary, and −1 < α < 1. The
fractional order operator Jα is defined by

Jαv(t) =





(ωα ∗ v)(t) if 0 < α < 1,

v(t) if α = 0,

(ω1+α ∗ v)′(t) if −1 < α < 0,

with ωα(t) =
tα−1

Γ (α)
,

where ∗ denotes the Laplace convolution: (f ∗ g)(t) =
∫ t
0 f(t − s)g(s) ds. For α = 0, the

problem (1.1) reduces to a classical initial-boundary value problem for the heat equation, and
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for other values of α, (1.1) models other physical phenomena, cf. McLean and Thomée (to
appear). For α 6= 0 the evolution equation is non-local in time, and we note the limiting values

lim
α↑1

Jαv(t) =

∫ t

0

v(s) ds and lim
α↓−1

Jαv(t) = v′(t).

The present paper is a continuation of the paper quoted above in which we proposed three
methods for discretization in time of (1.1), and analyzed them a Banach space framework. We
then applied our results to fully discrete methods based on a finite element approximation in
the spatial variable, and derived bounds for the L2-norm of the error at time t. Our present
work is devoted to the technically somewhat more challenging derivation of error estimates in
the maximum-norm.

Denoting the Laplace transform of u with respect to t by

û(z) = L(u)(z) =

∫ ∞

0

e−ztu(t) dt, (1.2)

we find easily from (1.1), since L(ωα)(z) = z−α for α > 0, that, with I the identity operator,

(zI + z−αA)û(z) = g(z) := u0 + f̂(z). (1.3)

Instead of using time stepping for the numerical solution of (1.1), our approach is to solve (1.3)
for û(z), and use this to represent the solution of (1.1) as a modified inverse Laplace transform,

which is then approximated by quadrature. In our basic method it is required that f̂(z) is
bounded in a sector in the complex plane containing the real axis and extending into the left
half-plane. This method has a O(e−cN ) convergence rate on any closed time interval bounded
away from 0 and ∞, where N is the number of quadrature points. A second method, inspired
by Gavrilyuk and Makarov (2005), uses a modification of the inverse Laplace transform and

has a O(e−c
√
N ) convergence rate, which now holds uniformly down to t = 0. A third method

has a similar error behavior, but has the additional advantage that it avoids the use of f̂ and
so is more generally applicable. Each of the three methods requires the solution of N elliptic
problems, which may be solved in parallel. For the first two methods, these elliptic problems
are independent of t, and thus give the approximate solution of (1.1) for all t.

In Section 2 below we discuss the initial-boundary value problem (1.1) in an abstract setting,
with A a sectorial operator in a Banach space B, and in Section 3 we review the abstract theory
from McLean and Thomée (to appear) for our three time discretization methods.

In Section 4 we show error bounds in the maximum-norm for a spatially semidiscrete version
of (1.1) based on piecewise linear finite elements. This analysis depends on known resolvent
estimates in the maximum-norm, for −∆ by Stewart (1974), and for its finite element analogue
by Bakaev, Thomée & Wahlbin (2003). In Section 5 we use our general theory to derive error
bounds in maximum-norm for fully discrete schemes obtained by applying the time discretiza-
tion methods of Section 3 to the spatially semidiscrete solution. In Section 6 we illustrate our
results by some numerical examples, with special focus on the third method, which does not
utilize f̂ .

In an Appendix we include, for the convenience of the reader, a proof of the maximum-norm
resolvent estimate for −∆, which avoids the technical complexity of the much more general
analysis in Stewart (1974), and extends the result from C to L∞. The proof has been provided
to us by Michel Crouzeix, whose generous help is gratefully acknowledged.
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2. The continuous problem

In this section we discuss our initial-boundary value problem (1.1) in an abstract form, with A
a closed, sectorial operator in a Banach space B with norm ‖ · ‖. We thus require the spectrum
of A to lie in a sector

Σϕ = {z : | arg z| < ϕ}, with 0 < ϕ < (1 − α)
π

2
, (2.1)

and that for some constant M > 1, the resolvent estimate

‖(zI −A)−1‖ 6
M

1 + |z|
, for z 6∈ Σϕ, (2.2)

holds in the operator norm induced by the norm ‖ · ‖ in B. From (1.3), it follows that

û(z) = Ê(z)g(z), where Ê(z) := zα(z1+αI +A)−1, (2.3)

and from the resolvent estimate (2.2) we obtain

‖Ê(z)‖ 6
M |z|α

1 + |z|1+α
6
M

|z|
, for z ∈ Σβ , β := min

(
π,
π − ϕ

1 + α

)
. (2.4)

The condition on ϕ in (2.1) ensures that 1
2π < β 6 π.

For any ω > 0, let Γ be a curve in the sector Σβ̄ which is homotopic with the vertical
line Γ0 = {z : Re z = ω} and extends into the left half-plane. We assume that the Laplace

transform f̂(z), defined according to (1.2), may be continued as an analytic function to the
closed subdomain of Σβ̄ to the right of and including Γ . By the Laplace inversion formula we
may then write

u(t) =
1

2πi

∫

Γ

eztw(z) dz, where w(z) = Ê(z)g(z). (2.5)

Taking f ≡ 0 in (1.3), so that g(z) = u0 in (2.3), we see that the solution operator for the
homogeneous case of (1.1) is given by

E(t)u0 =
1

2πi

∫

Γ

eztÊ(z)u0 dz, for t > 0. (2.6)

We recall that, if A is densely defined, then (2.2) implies that −A generates an analytic
semigroup E(t) on B, which may be represented by (2.6) with α = 0, i.e.,

E(t)v =
1

2πi

∫

Γ

ezt (z I +A)−1 v dz, for t > 0, (2.7)

see, e.g., Pazy (1983). Even when A is not densely defined, (2.7) defines an operator with
many of the properties of an analytic semigroup, the essential difference being that E(t)v → v
for t → 0 if and only if v ∈ D(A) 6= B, see da Prato and Sinestrari (1987). In this case, the
restriction of E(t) to B0 = D(A) is a standard analytic semigroup on B0.

Even though the operator in (2.6) is not a semigroup for α 6= 0, it still has the stability and
smoothing properties of an analytic semigroup described in the following theorem.
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Theorem 2.1 For −1 < α < 1 the solution operator (2.6) for the homogenous equation
satisfies, for t > 0,

‖AσE(q)(t)v‖ 6 Cβ̄,qMt−(1+α)σ−q‖v‖, for q > 0, σ = 0, 1, (2.8)

and
‖E(q)(t)v‖ 6 Cβ̄,qMt1+α−q‖Av‖, for q > 1. (2.9)

Further,
‖v − E(t)v‖ 6 Cβ̄Mt1+α‖Av‖. (2.10)

Proof. From (2.6) we see that

E(q)(t)v =
1

2πi

∫

Γ

zqeztÊ(z)v dz for t > 0 and q > 0,

and since AÊ(z) = zαA(z1+αI +A)−1 = zα(I − zÊ(z)), (2.4) with M > 1 implies

‖AÊ(z)‖ 6 2M |z|α for z ∈ Σβ̄. (2.11)

Hence, for σ = 0, 1, we have
‖AσÊ(z)‖ 6 CM |z|(1+α)σ−1. (2.12)

We now choose Γ = Γ 0
t ∪ Γ∞

t where Γ 0
t is the circular arc parameterised by z = t−1eiθ

for |θ| 6 β̄ and Γ∞
t = {z = r e±iβ̄, r > 1/t}. Since Re e±iβ̄ = cos β̄ < 0, we find using the

substitution r = t−1ρ that

‖AσE(q)(t)v‖ 6
M

2π

(
2

∫ ∞

1/t

rqert cos β̄r(1+α)σ dr

r
+

∫ β̄

−β̄
t−qecos θt−(1+α)σ dθ

)
‖v‖

=
M

π
t−q−(1+α)σ

(∫ ∞

1

ρq+(1+α)σeρ cos β̄ dρ

ρ
+

∫ β̄

0

ecos θ dθ

)
‖v‖,

which shows (2.8). Next, we observe that if we set

Ê0(z) = Ê(z) − z−1I = −z−1−αÊ(z)A, (2.13)

then, since (2πi)−1
∫
Γ
ezt z−1 dz = 1, we have

E(t)v − v =
1

2πi

∫

Γ

ezt
(
Ê(z) − z−1

)
v dz =

1

2πi

∫

Γ

eztÊ0(z)v dz. (2.14)

Here, by (2.4),

‖Ê0(z)v‖ 6 CM |z|−(2+α)‖Av‖,

and hence, for q > 1,

‖E(q)(t)v‖ 6 CM

(∫ ∞

1/t

rqert cos β̄r−(1+α) dr

r
+

∫ β̄

−β̄
t−qecos θt1+α dθ

)
‖Av‖

= CM t(1+α)−q
(∫ ∞

1

ρq−(1+α)eρ cos β̄ dρ

ρ
+

∫ β̄

0

ecos θ dθ

)
‖Av‖,
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which shows (2.9). In the same way (2.10) follows using (2.14) �

Note, in particular, that the solution u(t) = E(t)u0 of the homogeneous case of (1.1) belongs
to D(A) for t > 0. It also follows from (2.10) that E(t)u0 → u0 as t → 0 if u0 ∈ D(A). We
shall later have reason to apply the following regularity result for the homogeneous problem.

Corollary 2.1 Let −1 < α < 1. If f ≡ 0 then the solution of (1.1) satisfies

∫ t

0

‖Au′(s)‖ ds 6 Cα,β̄M t1+α‖A2u0‖, for t > 0. (2.15)

Proof. Theorem 2.1 gives

‖Au′(t)‖ = ‖AE ′(t)u0‖ = ‖E ′(t)Au0‖ 6 Cβ̄M tα‖A2u0‖.

�

Using an interpolation space argument, the regularity requirement for u0 in (2.15) may be
somewhat reduced. We shall not insist on the details.

Since the inverse Laplace transform of Ê(z)f̂(z) is the convolution of E(t) and f(t), one may
show the Duhamel formula

u(t) = E(t)u0 +

∫ t

0

E(t− s)f(s) ds. (2.16)

This expression for u(t) is well defined even without knowledge of f̂ , and may be considered to
define a mild solution of (1.1). By the case σ = q = 0 of (2.8), it follows that this mild solution
is stable in the sense that

‖u(t)‖ 6 Cβ̄M
(
‖u0‖ +

∫ t

0

‖f(s)‖ ds
)
, for t > 0. (2.17)

We now consider the inhomogenous problem (1.1) with zero initial data, u0 = 0. In our
applications in the present paper it is desirable to avoid spatial regularity requirements for f(t)
for t > 0, so as not to impose unnatural restrictions on the boundary values of this function. We
shall therefore show two regularity results, for α < 0 and α > 0, respectively, for the quantity
bounded in Corollary 2.1 and which require no “spatial” regularity of f(t) for t > 0.

Theorem 2.2 For −1 < α < 0, the solution of the inhomogeneous problem (1.1), with u0 = 0,
satisfies ∫ t

0

‖Au′(s)‖ ds 6 Cα,β̄M t|α|
(
‖f(0)‖ +

∫ t

0

‖f ′(s)‖ ds

)
, for t > 0.

Proof. Since Au(t) =
∫ t
0 AE(s)f(t − s) ds we see that

Au′(t) = AE(t)f(0) +

∫ t

0

AE(s)f ′(t− s) ds,

and hence, by Theorem 2.1,

‖Au′(t)‖ 6 Cβ̄M

(
t−(1+α)‖f(0)‖ +

∫ t

0

s−(1+α)‖f ′(t− s)‖ ds

)
.
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Since 1 + α < 1, we find by integration
∫ t

0

‖Au′(s)‖ ds 6
Cβ̄M

|α|
t−α‖f(0)‖ + Cβ̄M

∫ t

0

τ−(1+α)

∫ t

τ

‖f ′(s− τ)‖ ds dτ,

which is bounded as claimed. �

Theorem 2.3 Let u0 = 0 and assume f(0) ∈ D(A). For 0 6 α < 1 the solution of the
inhomogeneous problem (1.1) satisfies, for t > 0,

∫ t

0

‖Au′(s)‖ ds 6 Cα,β̄M t ‖Af(0)‖ + Cα,β̄M t1−α
(
‖f ′(0)‖ +

∫ t

0

‖f ′′(s)‖ ds

)
.

Proof. From the identity f̂ ′′(z) = zf̂ ′(z) − f ′(0) = z2f̂(z) − zf(0)− f ′(0) we see that

Au′(t) =
1

2πi

∫

Γ

eztAÊ(z)
(
f(0) + z−1f ′(0) + z−1f̂ ′′(z)

)
dz.

Thus, if we define the linear operator

B(t)v =
1

2πi

∫

Γ

eztz−1AÊ(z)v dz,

then

Au′(t) = AE(t)f(0) +B(t)f ′(0) +

∫ t

0

B(s) f ′′(t− s) ds. (2.18)

Taking σ = q = 0 and v = Af(0) in (2.8), we see that
∫ t

0

‖AE(s)f(0)‖ ds 6 Cβ̄M t ‖Af(0)‖.

Further, using (2.11), we have, by the method of proof used for Theorem 2.1,

‖B(t)‖ 6 CM

(∫ ∞

1/t

ert cos β̄rα
dr

r
+

∫ β̄

−β̄
ecos θt−α dθ

)
6 Cβ̄Mt−α.

This bounds the last two terms in (2.18) as desired. �

Corollary 2.2 Assume that u0 = 0. The solution u(t) of the inhomogeneous equation (1.1)
belongs to D(A) for t > 0, in the case −1 < α < 0 if f ′ ∈ L1(0, t;B), and in the case 0 6 α < 1
if f(0) ∈ D(A) and f ′′ ∈ L1(0, t;B).

Proof. Since ‖Au(t)‖ 6

∫ t

0

‖Au′(s)‖ ds, this follows at once from Theorems 2.2 and 2.3. �

For completeness we remark that conditions for the function u(t) of Corollary 2.2 to belong

to D(A) may also be expressed in terms of f̂ . Here and below we use the notation

‖g‖Z := ‖g‖B,Z := sup
z∈Z

‖g(z)‖, ‖g‖Z,γ := ‖g‖B,Z,γ := sup
z∈Z

(
(1 + |z|)γ‖g(z)‖

)
, for γ > 0.

With regard to the latter norm, recall that the decay of the Laplace transform f̂(z) reflects the
regularity of f in time, and the order to which f(t) vanishes as t → 0; consider, for instance,

L{1} = z−1 and L{t} = z−2. We cannot expect ‖f̂‖Σβ,γ to be finite for γ > 1 if f(0) 6= 0.
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Theorem 2.4 Setting γ = 1 +α, we have for the solution u(t) of the inhomogeneous equation
(1.1) with u0 = 0, for t > 0,

‖Au(t)‖ 6 Cβ̄Mt−γ‖f̂‖Σβ̄ , and ‖Au(t)‖ 6 Cβ̄M‖f̂‖Σβ̄,γ .

Proof. By (2.6) we have

Au(t) =
1

2πi

∫

Γ

eztAÊ(z) f̂(z) dz.

Hence, in view of (2.11),

‖Au(t)‖ 6 CM

∫

Γ

|z|(1−s)γ |ezt|
|dz|

|z|
‖f̂(z)‖Γ,sγ , s = 0, 1.

Choosing Γ as in the proof of Theorem 2.1 we may bound the integral over Γ by Ct−(1−s)γ ,
which shows the theorem. �

3. Time discretization

In this section we review the analysis from McLean and Thomée (to appear) of our three
methods for discretization in time of the initial-value problem (1.1) in the Banach space setting.
We formulate the three methods in detail and state the error bounds without proofs, in a form
convenient for our applications. Although in our earlier paper we assumed that the operator A
was densely defined in B, this was not used in these proofs, so that the results remain valid in
our present context.

We select an integration contour Γ in (2.5), such that f̂(z), and thus also g(z), is analytic
on and to the right of Γ , and then apply a quadrature formula to (2.5). Specifically, we assume

that f̂(z) is analytic in Σ
ω

β , where

Σω
β := ω +Σβ ⊂ Σβ̄, with ω > 0, β ∈ (1

2π, β̄] and β < π,

and choose Γ to be a curve of the form

z = z(ξ) := ω + λ(1 − sin(δ − iξ)) = ω + λ(1 − sin δ cosh ξ) + iλ cos δ sinh ξ, ξ ∈ R, (3.1)

where the scaling factor λ is positive and δ will be assumed below to satisfy δ ∈ (0, β − 1
2π).

Writing z = x+ iy we find that Γ is the left branch of a hyperbola which cuts the real axis at
the point z = ω + λ(1 − sin δ) and has asymptotes y = ±(x − ω − λ) cot δ. Thus, the above
condition on δ ensures that Γ lies in the sector Σω

β and crosses into the left half-plane. The
assumption that β < π ensures |z| > cβ |z − ω| for z ∈ Σω

β , where cβ = sinβ > 0.
We may therefore represent u(t) as an integral with respect to ξ,

u(t) =

∫ ∞

−∞
v(ξ, t) dξ, where v(ξ, t) =

1

2πi
ez(ξ)tw

(
z(ξ)

)
z′(ξ).

The factor ez(ξ)t in the integrand has modulus eωteλ(1−sin δ cosh ξ)t and so exhibits a double-
exponential decay as |ξ| → ∞, for any fixed t > 0.
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For our first approximation method, we choose a quadrature step k and apply an equal
weight quadrature rule

QN (v) := k

N∑

j=−N
v(ξj) ≈

∫ ∞

−∞
v(ξ) dξ, with ξj := jk. (3.2)

In this way, we obtain an approximate solution to (1.1) of the form

UN (t) := QN (v(·, t)) =
k

2πi

N∑

j=−N
ezjtw(zj) z

′
j, where zj := z(ξj), z

′
j := z′(ξj). (3.3)

To compute UN (t) we must therefore solve the 2N + 1 elliptic equations

(z1+α
j I +A)w(zj) = zαj g(zj), for |j| 6 N. (3.4)

These equations are independent and hence may be solved in parallel. Note that the w(zj) ∈ B
determine the approximate solution (3.3) for all t > 0. We remark that the definition (3.3)
depends on the choice of the curve Γ , even though the representation (2.5) does not.

To analyze the quadrature error, we extend the parametric representation (3.1) of Γ to a
conformal mapping

z = Φ(ζ) = ω + λ(1 − sin(δ − iζ)),

from Yr = { ζ : | Im ζ| 6 r } onto Sr = {Φ(ζ) : ζ ∈ Yr } ⊃ Γ . In fact, Φ maps the line Im ζ = η
onto the left branch of the hyperbola (3.1), with δ replaced by δ + η, so Sr is bounded on the
left and right by the left branches of the hyperbolas corresponding to Im ζ = ±r. To ensure
that Sr ⊂ Σω

β and that Re z → −∞ for |z| → ∞ with z ∈ Sr, we shall require throughout that

0 < δ − r < δ + r < β − 1
2π, or equivalently, see Figure 1, that 0 < r < min

(
δ, β − 1

2π − δ
)
.

In (McLean and Thomée, to appear, Theorem 3.1) we showed the following O(e−cN ) error
bound for t > 0, with specific λ ∝ N and k ∝ 1/N . Here and below we write r̄ = 2πr and
ℓ(s) = max(1, log(1/s)).

Theorem 3.1 Let u(t) be the solution of (1.1), and let [t0, T ] ⊂ (0,∞). Let 0 < θ < 1,
and define b > 0 by cosh b = 1/(θτ sin δ), where τ = t0/T . Let the scaling factor in Γ
be λ = θr̄N/(bT ), and UN (t) be the approximate solution of (1.1) defined in (3.3), with
k = b/N 6 r̄/ log 2. Then we have

‖UN(t) − u(t)‖ 6 CM eωtℓ(ρrN)e−µN
(
‖u0‖ + ‖f̂‖Σω

β

)
, for t ∈ [t0, T ],

where µ = r̄(1 − θ)/b, ρr = θr̄τ sin(δ − r)/b, and C = Cδ,r,β .

One drawback of this result is that it says nothing about the error for 0 6 t 6 t0. Numerical
results reported in McLean and Thomée (to appear) confirm that in practice the accuracy
of UN (t) deteriorates as t → 0. For the case α = 0 of a parabolic partial differential equation,
Gavrilyuk and Makarov (2005) modified the integrand in the representation formula (2.5) in a

way that yielded a O(e−c
√
N ) convergence rate, uniformly down to t = 0, provided the data
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π − β
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xx

Fig. 1. The region Sr (shaded) and the contour Γ for ω = 0.

possess some “spatial” regularity, and this idea was used in McLean and Thomée (to appear)
also when α 6= 0. Specifically, we note that

L(u0 + F (t)) = z−1
(
u0 + f̂(z)

)
= z−1g(z), where F (t) :=

∫ t

0

f(s) ds,

so that, with Ê0(z) defined in (2.13), we may rewrite (2.5) as

u(t) = u0 + F (t) +
1

2πi

∫

Γ

eztÊ0(z)g(z)dz. (3.5)

Setting
w0(z) := Ê0(z)g(z) = w(z) − z−1g(z), (3.6)

and using the parametric representation (3.1) of Γ , with λ appropriately chosen in the modified
integral in (3.5), we now have

u(t) = u0 + F (t) +

∫ ∞

−∞
v0(ξ, t) dξ, where v0(ξ, t) :=

1

2πi
ez(ξ)tw0(z(ξ)) z′(ξ).

Applying again the quadrature rule (3.2) we obtain our second approximate solution to (1.1),

U0
N (t) := u0 + F (t) +

k

2πi

N∑

j=−N
ezjtw0(zj) z

′
j, for t > 0. (3.7)



10 of 22 W. MCLEAN AND V. THOMÉE

Once again, to compute this approximate solution, we must first obtain the values of w(zj)
for |j| 6 N by solving the elliptic equations (3.4), and then use (3.6) to find the w0(zj). The
error bound of (McLean and Thomée, to appear, Theorem 3.2) then contains the following for
our modified method (3.7), valid uniformly down to t = 0.

Theorem 3.2 Let u(t) be the solution of (1.1) and suppose 0 < γ 6 1 + α. Define Γ by (3.1)
with λ = γ/(κT ), where κ = 1 − sin(δ − r). Let U0

N (t) be the approximate solution of (1.1)

from (3.7), with k =
√
r̄/(γN) 6 r̄/ log 2. Then we have, with C = Cδ,r,β,

‖U0
N (t) − u(t)‖ 6 CMeωtγ−1T γe−

√
r̄γN (‖Au0‖ + ‖f̂‖Σω

β
,γ), for t 6 T.

A serious restriction in the application of these two schemes is that they require the Laplace
transform f̂(z) to exist, to be computable for each z ∈ Γ , and to be bounded on Σω

β .
We therefore consider a third alternative, based on the application of Duhamel’s formula

(2.16), which does not have this disadvantage. Defining

g(z, t) := eztu0 +

∫ t

0

ez(t−s)f(s) ds,

we find, by substituting the integral representation (2.6) into (2.16), that

u(t) =
1

2πi

∫

Γ

eztÊ(z)u0 dz +

∫ t

0

1

2πi

∫

Γ

ez(t−s)Ê(z)f(s) dz ds =
1

2πi

∫

Γ

Ê(z)g(z, t) dz.

This means that, compared to (2.5), we have restricted the integration in the definition of f̂(z)
to (0, t), which is consistent with the fact that u(t) only depends on f over this interval. Note
that we have included the factor ezt in the definition of g(z, t) to avoid floating-point overflow

when Re z is large and negative. In general, the integrand Ê(z)g(z, t) does not exhibit a double-
exponential decay for z = z(ξ) and |ξ| → ∞, so we cannot proceed as in our first method but
must instead modify the integral representation of u(t) as in our second method. Since

1

2πi

∫

Γ

z−1g(z, t) dz = res
z=0

g(z, t)

z
= g(0, t) = u0 + F (t),

it follows that

u(t) = u0 + F (t) +
1

2πi

∫

Γ

Ê0(z)g(z, t) dz,

which is similar to (3.5). Setting w(z, t) := Ê(z)g(z, t) and

w̃(z, t) := Ê0(z)g(z, t) = w(z, t) − z−1g(z, t), (3.8)

and using once again the representation (3.1) for Γ , we obtain

u(t) = u0 + F (t) +

∫ ∞

−∞
ṽ(ξ, t) dξ, where ṽ(ξ, t) =

1

2πi
w̃

(
z(ξ), t

)
z′(ξ).

The quadrature rule (3.2) now gives our third approximate solution

ŨN (t) := u0 + F (t) +
k

2πi

N∑

j=−N
w̃(zj, t)z

′
j , (3.9)
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where the w̃(zj , t) are obtained by first solving the equations

(z1+α
j I +A)w(zj , t) = zαj g(zj, t), for |j| 6 N, (3.10)

and then using (3.8). In contrast to the elliptic equations (3.4) arising in the previous two
schemes, the right hand sides in (3.10), and hence also the solutions, now depend on t. The
equations (3.10) are independent for different j and t, so again we can we solve the 2N + 1
equations in parallel, and also solve these systems for different t in parallel.

The following special case of (McLean and Thomée, to appear, Theorem 3.3) for our third
method looks as for our second method, and is also valid uniformly down to t = 0. Here we
may use ω = 0 and β = β. We emphasize again that since this method does not depend on f̂
it is more generally applicable than the first two methods.

Theorem 3.3 Let u(t) be the solution of (1.1) and suppose γ = min(1, 1 + α). Define Γ by

(3.1) with λ = γ/(κT ), where κ = 1 − sin(δ − r). Let ŨN (t) be the approximate solution of
(1.1) from (3.9), with k =

√
r̄/(γN) 6 r̄/ log 2. Then, with C = Cδ,r,β̄ , we have

‖ŨN(t) − u(t)‖ 6 CMγ−1T γe−
√
r̄ γ N

(
‖Au0‖ + ‖f(0)‖ +

∫ t

0

‖f ′‖ ds
)

for t 6 T.

4. Spatial discretization by finite elements

From now on we suppose that A = −∆ in a bounded convex domain Ω ⊂ Rd with smooth
boundary ∂Ω, under homogeneous Dirichlet boundary conditions. More precisely, we shall
consider A as the closure of the standard Laplacian on Ċ2 = C2(Ω̄) ∩ C0(Ω̄) in the Banach
space B = L∞ = L∞(Ω), equipped with the norm ‖v‖L∞ = ess supx∈Ω|v(x)|. It follows from
the estimate (4.6) below of Agmon, Douglis, and Nirenberg that D(A) ⊃ W 2

p (Ω) ∩ C0(Ω̄) for

large p, and since it is clear that D(A) ⊂ C0(Ω̄) we have D(A) = C0(Ω̄) 6= L∞. Thus, in order
for E(t)u0 → u0 as t→ 0, it is required that u0 ∈ C0(Ω̄).

In the Appendix we show that the resolvent estimate (2.2) holds for A, for arbitrarily small
ϕ, and that −A thus generates a generalized analytic semigroup given by (2.7). In particular,
it follows that the stability and smoothness estimates of Section 2 are satisfied in this case. For
given Ω the constant M in (2.2) depends only on ϕ, and, for simplicity, we think of ϕ as fixed
below and let M be implicitly included in the other constant factors in our estimates.

To discretize in the spatial variable only, we use a family of quasiuniform partitions Th = {K}
of Ω into polyhedral elements K, indexed by h, the maximum diameter of the K. Let Vh denote
the corresponding space of continuous piecewise linear functions vanishing on ∂Ω,

Vh = {χ ∈ C(Ω̄) : χ
∣∣
K

linear in K, χ = 0 on ∂Ω},

and recall the approximation property

inf
χ∈Vh

{
‖u− χ‖L∞ + h‖∇(u− χ)‖L∞

}
6 Ch2‖u‖Ẇ 2

∞

.

The spatially discrete problem is then to find uh(t) ∈ Vh such that

(∂tuh, χ) + Jα(∇uh,∇χ) = (f, χ), ∀χ ∈ Vh, t > 0, with uh(0) = u0h. (4.1)
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Here, as usual, (·, ·) denotes the inner product in L2(Ω), and u0h ∈ Vh is a suitable approxima-
tion to u0.

Introducing the discrete Laplacian ∆h : Vh → Vh defined by

−(∆hψ, χ) = (∇ψ,∇χ), for ψ, χ ∈ Vh,

the problem (4.1) is equivalent to

∂tuh − Jα∆huh = Phf(t), for t > 0, with u(0) = u0h,

where Ph : L2(Ω) → Vh is the orthogonal projector with respect to (·, ·). We shall now consider
this as a problem of the form (1.1) in B = Vh, with norm ‖ · ‖L∞ and with A = −∆h.

It is known from Bakaev, Thomée & Wahlbin (2003) that, when Ω is convex, with a smooth
boundary, the maximum-norm resolvent estimate (2.2) holds for Ah = −∆h for arbitrarily
small ϕ, with M independent of h. Thus, with Γ ⊂ Σβ̄ , the results of Section 2 apply, and
in particular, the analogue of (2.8) holds for the solution operator of the spatially discrete
homogeneous equation,

Eh(t)u0 =
1

2πi

∫

Γ

eztÊh(z)u0h dz, where Êh(z) = zα(z1+αI +Ah)
−1.

We shall think of the family of approximating spaces Vh as given, and, as in the continuous
case, let the constant in (2.2) be implicitly included in with other factors in our estimates.
To establish error estimates for uh we introduce the Ritz projector Rh : H1

0 (Ω) ∪ C(Ω̄) → Vh
defined by

(∇Rhv,∇χ) = (∇v,∇χ) =
∑

K∈Th

∫

∂K

v
∂χ

∂ n
ds, ∀χ ∈ Vh.

We begin with a nonsmooth data error estimate for the semidiscrete problem, which was
shown in (McLean and Thomée, 2004, Theorem 5.1) for 0 < α < 1. The argument for −1 <
α 6 0 is the same, but for completeness and later reference we include the proof.

Theorem 4.1 Let uh(t) and u(t) be the solutions of (4.1) and (1.1), with f̂ analytic in Σω
β ,

and let u0h = Phu0. Then we have, with C = Cω,β,T and ℓh := max
(
1, log(1/h)

)
,

‖uh(t) − u(t)‖L∞ 6
Ct−1−α

1 + α
h2ℓ2h

(
‖u0‖L∞ + ‖f̂‖L∞,Σωβ

)
, for 0 < t 6 T.

Proof. With notation as above we may write, with Γ = ∂Σω
β ,

uh(t) − u(t) =
1

2πi

∫

Γ

etz zαGh(z)g(z) dz, (4.2)

where

Gh(z) := z−α
(
Êh(z)Ph − Ê(z)

)
= (z1+αI +Ah)

−1Ph − (z1+αI +A)−1.

We shall show below that

‖Gh(z)v‖L∞ 6 Ch2ℓ2h‖v‖L∞ , for z ∈ Σω
β . (4.3)
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Assuming this, we have at once

‖uh(t) − u(t)‖L∞ 6 Ch2ℓ2h‖g‖L∞,Σωβ

∫

Γ

|ezt| |z|α|dz|. (4.4)

Setting z = ω + s e±iβ on Γ , we have c s 6 |z| 6 s + ω on Γ , since c|z − ω| 6 |z| for z ∈ Σω
β ,

with c > 0. Hence, |z|α 6 Csα for −1 < α 6 0, whereas |z|α 6 ωα + sα for 0 6 α < 1, so

∫

Γ

|ezt| |z|α|dz| 6 Ceωt
∫ ∞

0

e−st cosβ max
(
sα, ωα + sα

)
ds 6 Ceωt

(
t−1−α + ωαt−1

)
.

Together with (4.4) this shows our claim.
It remains to show (4.3). For this purpose, we write, with w = z1+α, R(w) = (wI + A)−1,

and Rh(w) = (wI +Ah)
−1,

Gh(z) = Rh(w)Ph −R(w) = Gh1(z) +Gh2(z),

where

Gh1(z) := (Ph − I)R(w) and Gh2(z) := Rh(w)Ph − PhR(w).

To bound these two operators we use the fact that the piecewise linear interpolant Ih : C(Ω̄) →
Vh satisfies

‖Ihv − v‖L∞ 6 Ch2−d/p‖v‖W 2
p
, for p > d/2, if v = 0 on ∂Ω. (4.5)

This follows from the corresponding inequality for an individual element K of the partition Th,
which in turn may be obtained by transforming to a reference element and using the Bramble–
Hilbert lemma, together with an obvious estimate for u on Ω \Ωh. We also need the regularity
estimate

‖v‖W 2
p

6 Cp‖Av‖Lp , for 1 < p <∞, if v = 0 on ∂Ω, (4.6)

from Agmon, Douglis & Nirenberg (1950). These authors state (4.6) without the explicit
dependence on p, which may be traced through their proof to the Calderòn–Zygmund lemma.
Together (4.5) and (4.6) show, with p = ℓh,

‖Ihv − v‖L∞ 6 Ch2−d/pp‖Av‖Lp 6 Ch2ℓh‖Av‖L∞ . (4.7)

To bound Gh1(z) we note that Phv− v = (Ph− I)(v− Ihv) and recall the stability estimate
‖Phv‖L∞ 6 C‖v‖L∞ from Douglas, Dupont and Wahlbin (1975). The operator AR(w) is
bounded in L∞, uniformly for z ∈ Σβ , and hence

‖Gh1(z)v‖L∞ 6 C
∥∥(Ih − I)R(w)v

∥∥
L∞

6 Ch2ℓh‖AR(w)v‖L∞ 6 Ch2ℓh‖v‖L∞ . (4.8)

To bound Gh2(z), we make use of the identity PhA = AhRh by writing

Gh2(z) = Rh(w)(Ph(wI +A) − (wI +Ah)Ph)R(w) = Rh(w)Ah(Rh − Ph)R(w),

and deduce that, because Rh − Ph = Rh(I − Ph),

Gh2(z) = Rh(w)AhRhGh1(z).
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Since (wI +Ah)
−1Ah is uniformly bounded on Σβ , we have

‖Gh2(z)‖L∞ 6 C‖RhGh1(z)‖L∞ . (4.9)

Recalling the maximum-norm stability estimate by Schatz and Wahlbin (1982) for the elliptic
projection Rh,

‖Rhv‖L∞ 6 Cℓh ‖v‖L∞ , for v ∈ C(Ω̄), (4.10)

it follows with the help of (4.8), since Gh1(z)v ∈ C0(Ω̄), that

‖Gh2(z)v‖L∞ 6 Cℓh‖Gh1(z)v‖L∞ 6 Ch2ℓ2h‖v‖L∞, (4.11)

which completes the proof of (4.3). �

We now show a smooth data estimate valid uniformly down to t = 0.

Theorem 4.2 Let uh(t) and u(t) be the solutions of (4.1) and (1.1), with f̂ analytic in Σω
β

and u0h = Phu0. Then we have, with γ = 1 + α and C = Cβ ,

‖uh(t) − u(t)‖L∞ 6 Ch2ℓ2h e
ωt

(
‖∆u0‖L∞ + ‖f̂‖L∞,Σωβ ,γ

)
, for t > 0.

Proof. We shall again use (4.2), choosing now Γ = ω + Γ 0
t ∪ Γ∞

t , with Γ 0
t and Γ∞

t as in the
proof of Theorem 2.1. First note that by (4.8) and (4.11), and since A = −∆ commutes with
R(w), we have

‖Gh(z)v‖L∞ 6 Ch2ℓ2h‖R(w)Av‖L∞ 6
C ℓ2h

1 + |z|1+α
‖∆v‖L∞, for z ∈ Σω

β .

Hence, in the case that f(t) ≡ 0, we have from (4.2)

‖uh(t) − u(t)‖L∞ 6 Ch2 ℓ2h

∫

Γ

|etz|
|dz|

|z|
‖∆u0‖L∞ ,

and, using |z| > c|z − ω| in Σω
β , the result stated follows from

∫

Γ 0

t

|ezt|
|dz|

|z|
6 C

∫ β

−β
dθ 6 C and

∫

Γ∞t

|ezt|
|dz|

|z|
6 C

∫ ∞

1/t

e−st cosβ
ds

s
6 C.

To treat the term in f̂ , we use (4.3) to find, for z ∈ Σω
β ,

|z|α‖Gh(z)f̂(z)‖L∞ 6
Ch2ℓ2h|z|

α

(1 + |z|)γ
‖f̂‖L∞,Σωβ ,γ 6

Ch2ℓ2h
|z|

‖f̂‖L∞,Σωβ ,γ .

In the same way as above this shows the result stated for u0 = 0. �

For the purpose of application to the analysis of our third time discretization method we
next show a classical type smooth data estimate that does not use f̂(z).

Theorem 4.3 Let uh(t) and u(t) be the solutions of (4.1) and (1.1), respectively, with u0h =
Phu0. Then, with C = Cβ̄ ,

‖uh(t) − u(t)‖L∞ 6 Ch2ℓ2h

(
‖∆u0‖L∞ +

∫ t

0

‖∆ut(s)‖L∞ ds
)

for t > 0. (4.12)
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Proof. We write uh− u = (uh−Rhu) + (Rhu− u) = ϑ+ ̺ and note that, by (4.10) and (4.7),

‖Rhv − v‖L∞ 6 Cℓh‖Ihv − v‖L∞ 6 Ch2ℓ2h‖∆v‖L∞ .

Hence

‖̺(t)‖L∞ 6 Ch2ℓ2h‖∆u(t)‖L∞ 6 Ch2ℓ2h

(
‖∆u0‖L∞ +

∫ t

0

‖∆ut(s)‖L∞ ds
)
.

Further, one easily finds

∂tϑ− Jα∆hϑ = −Ph̺t, for t > 0,

and hence, using Duhamel’s principle (2.16) and the stability of Eh(t) and Ph in L∞,

‖ϑ(t)‖L∞ 6 C
(
‖ϑ(0)‖L∞ +

∫ t

0

‖̺t(s)‖L∞ds
)

6 Ch2ℓ2h

(
‖∆u0‖L∞ +

∫ t

0

‖∆ut(s)‖L∞ ds
)
.

Together these estimates show the theorem. �

Using the results of Corollary 2.1 and Theorems 2.2 and 2.3 for A = −∆, u′ = ut, etc., with
‖ ·‖ = ‖ ·‖L∞ , immediately bounds the right hand side of (4.12) in the respective cases in terms
of the data of (1.1), and thus provide a maximum-norm error estimate for the semidiscrete
problem in (4.1).

5. Discretization in both time and space

In this section we present some error bounds for the fully discrete methods obtained by applying
our three time discretization methods to the spatially semidiscrete problem (4.1). The fully
discrete solution UN,h(t) obtained by application of our first method (3.3) to (4.1), with u0h =
Phu0, is thus defined by

UN,h(t) :=
k

2πi

N∑

j=−N
ezjtwh(zj) z

′
j, with wh(z) = Êh(z)Phg(z). (5.1)

To find UN,h(t) for a range of values of t it is now required to solve the discrete elliptic problems
to find wh(zj) ∈ Vh, for |j| 6 N , such that

z1+α
j

(
wh(zj), χ

)
+

(
∇wh(zj),∇χ

)
= zαj (g(zj), χ

)
, ∀ χ ∈ Vh. (5.2)

As before, these problems may be solved in parallel.
Combining Theorems 3.1 and 4.1 immediately shows the following error estimate for our

fully discrete method.

Theorem 5.1 Let u(t) be the solution of (1.1), and let UN,h(t) be defined by (5.1). Then,
under the assumptions of Theorem 3.1, we have, with C = Cδ,r,β,ω,t0,T and [t0, T ] ⊂ (0,∞),

‖UN,h(t) − u(t)‖L∞ 6
C

1 + α

(
h2ℓ2h + ℓ(ρrN)e−µN

)(
‖u0‖L∞ + ‖f̂‖L∞,Σωβ

)
, for t0 6 t 6 T .
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Applying the modified time discretization method (3.7) to the spatially discrete prob-
lem (4.1), again with u0h = Phu0, we obtain a different fully discrete solution, namely,

U0
N,h(t) = Ph

(
u0 + F (t)

)
+

k

2πi

N∑

j=−N
ezjtw0

h(zj) z
′
j , with w0

h(z) = wh(z) − z−1Phg(z). (5.3)

Notice that since w0
h(z) = Ph

(
wh(z) − z−1g(z)

)
, we may write

U0
N,h(t) = Ph

(
u0 + F (t) +

k

2πi

N∑

j=−N
ezjt

(
wh(zj) − z−1

j g(zj)
)
z′j

)
,

which avoids computing Phg(zj) for each j. Using Theorem 3.2 we now have the following
estimate for the error in the discretization in time of the spatially discrete problem (4.1). This

estimate may then be combined with Theorem 4.2 to obtain a complete O(h2ℓ2h+e−
√
r̄γN ) error

estimate.

Theorem 5.2 Let uh(t) be the solution of (4.1), let UN,h(t) be defined by (5.3). Then, under
the assumptions of Theorem 3.2 we have, with C = Cδ,r,β,ω,T ,

‖U0
N,h(t) − uh(t)‖L∞ 6 Ce−

√
r̄γN

(
ℓ2h‖∆u0‖L∞ + ‖f̂‖L∞,Σωβ ,γ

)
for t 6 T.

Proof. This follows at once from Theorem 3.2 and the inequality

‖AhPhv‖L∞ 6 Cℓ2h‖Av‖L∞ , for v ∈ D(A). (5.4)

To show (5.4) we write

‖AhPhv‖L∞ 6 ‖AhRhv‖L∞ + ‖AhPh(Rh − I)v‖L∞ = I + II.

Since AhRh = PhA, we find I 6 C‖Av‖. For II we note that since {Th} is quasiuniform, we
have the inverse estimate

‖Ahχ‖L∞ 6 Ch−2‖χ‖L∞, ∀χ ∈ Vh. (5.5)

In fact, for any ϕ ∈ L1, since Ph is stable in L1,

(Ahχ, ϕ) = (Ahχ, Phϕ) = (∇χ,∇Phϕ) 6
∑

τ∈Th
‖∇χ‖L∞(τ)‖∇Phφ‖L1(τ)

6 Ch−2‖χ‖L∞ ‖Phϕ‖L1
6 Ch−2‖χ‖L∞ ‖ϕ‖L1

,

which shows (5.5). Thus, using (4.7),

II 6 Ch−2‖(Rh − I)v‖L∞ 6 Ch−2ℓh‖(Ih − I)v‖L∞ 6 Cℓ2h‖Av‖L∞ .

This shows (5.4) and thus the theorem. �

We finally turn to our third method, using (3.9). With wh(z, t) = Ê0(z)Phg(z, t), so that
the wh(zj , t) satisfy the obvious modifications of the elliptic finite element equations (5.2), we
define w̃h(z, t) = wh(z, t) − z−1Phg(z, t) and put

ŨN,h(t) := Ph
(
u0 + F (t)

)
+

k

2πi

N∑

j=−N
w̃h(zj , t)z

′
j. (5.6)
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As with (5.3), since w̃h(z, t) = Ph
(
wh(z, t) − z−1g(z, t)

)
we can avoid computing Phg(zj, t) for

each j by moving Ph outside the sum.
For this method we have the following, now based on Theorem 3.3.

Theorem 5.3 Let uh(t) be the solution of (4.1), and let ŨN,h(t) be defined by (5.6). Then,
under the assumptions of Theorem 3.3, we have with C = Cδ,r,β̄,ω,T ,

‖ŨN,h(t) − uh(t)‖L∞ 6 Ce−
√
r̄γN

(
‖∆u0‖L∞ + ‖f(0)‖L∞ +

∫ t

0

‖ft(s)‖L∞ ds
)

for t 6 T.

6. Numerical Examples

We illustrate our results using two numerical examples. In both cases, A = −△ on the square
Ω = (0, 4) × (0, 4) with homogenous Dirichlet boundary conditions, and we choose T = 5. For
the initial data we take a simple linear combination of eigenfunctions of A,

u0(x) = 1
2 sin

(
1
4πx1

)
sin

(
1
4πx2

)
+ 3

10 sin
(

2
4πx1

)
sin

(
3
4πx2

)
. (6.1)

Since the spectrum of A is a subset of the positive real half-line, the angle ϕ in (2.1) may be
arbitrarily small, and we choose δ = π

4 min
(
1, (1 − α)/(1 + α)

)
, so that our assumptions are

satisfied for 0 < r < δ; see Figure 1 and the discussion preceding Theorem 3.1. In our numerical
computations we use r = 0.9× δ. For our first method, we choose t0 = 0.5 and θ = 0.1, and for
our second and third methods we set γ = min(1, 1 + α). In the experiments described below
we use a fixed triangulation of Ω and increase N until the error from the time discretization is
neglible in comparison to that from the spatial discretization.

We start with a uniform 60 × 60 grid and then bisect each square along its north-west to
south-east diagonal, thereby triangulating Ω. Since analytic solutions are not available for
our example problems, in both cases we compute a high accuracy, reference solution using one
of our time discretization methods with a sufficiently large choice of N = N∗. In addition,
our reference solution employs a finer 240 × 240 spatial grid, and for each elliptic problem we
incorporate one step of Richardson extrapolation (requiring a further elliptic solve on a 480×480
grid), so that the spatial error is O(h4). This reference solution serves as our “exact” solution
for 0 < t 6 T , but at t = 0 we use the known initial data (6.1). The errors shown in the tables
are for the discrete maximum-norm using the nodes of the 240 × 240 grid, which means we
sample the error at 15 points in each triangle of the original 60 × 60 grid. To solve the linear
systems we use the sparse direct solver for complex matrices provided by UMFPACK, see Davis
(2004).

To simplify our implementation, when assembling the load vector for the finite element
equations (5.2) we approximate g(zj) by Ihg(zj), where Ih is the interpolation projection that
takes v ∈ C(Ω) to the continuous, piecwise-linear function Ihv satisfying Ihv(xp) = v(xp)
for all vertices xp in the triangulation (including the vertices on the boundary, so Ihv /∈ Vh
if v(xp) 6= 0 for any xp ∈ ∂Ω). In effect, we compute a numerical solution to a modified
continuous problem, with u0 and f(t) in (1.1) replaced by Ihu0 and Ihf(t). The stability
estimate (2.17) for the continuous problem implies that the associated additional error is of

order ‖u0 − Ihu0‖ +
∫ t
0
‖f(s) − Ihf(s)‖ ds, which will be O(h2) for our choices of u0 and f .

Example 6.1 We begin by revisiting a calculation from our previous paper, McLean and
Thomée (to appear), but with the error measured in the maximum-norm instead of the L2-
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Table 1 Errors in UN,h(t), U
0
N,h(t), ŨN,h(t) at t = 2.0 for a

60 × 60 grid with f(x, t) = e−t/4 and α = −1/2.

N method 1 method 2 method 3

5 3.0464e-02 4.7060e-01 1.1820e-01

10 3.4677e-03 3.1097e-02 2.6197e-02

20 3.4677e-03 8.2922e-03 5.2769e-03

30 3.4677e-03 4.6244e-03 3.4677e-03

40 3.4677e-03 3.4677e-03 3.4677e-03

Table 2 Errors in ŨN,h(t) for f given by (6.2) and α = −1/2.

N t = 0.0 t = 1.0 t = 3.0 t = 5.0

5 1.6655e-01 8.2316e-02 1.1979e-01 9.3548e-02

10 5.5016e-02 1.7858e-02 2.2820e-02 2.0539e-02

20 1.0004e-02 3.9879e-03 3.7614e-03 3.4283e-03

30 3.5077e-03 3.2388e-03 1.7528e-03 1.3733e-03

40 2.6674e-03 3.2388e-03 1.7296e-03 1.2651e-03

50 2.8163e-03 3.2388e-03 1.7296e-03 1.2651e-03

60 2.8741e-03 3.2388e-03 1.7296e-03 1.2651e-03

80 2.9043e-03 3.2388e-03 1.7296e-03 1.2651e-03

Table 3 Errors in ŨN,h(t) for f given by (6.2) and α = 0.

N t = 0.0 t = 1.0 t = 2.0 t = 3.0

5 5.2112e-02 2.1288e-02 2.1385e-02 2.3927e-02

10 7.9343e-03 4.5562e-03 2.6404e-03 2.6243e-03

20 2.0079e-03 3.1085e-03 4.6697e-04 1.6832e-04

30 1.6319e-03 3.1085e-03 3.5982e-04 6.4468e-05

40 1.5893e-03 3.1085e-03 3.5100e-04 5.6079e-05

50 1.5829e-03 3.1085e-03 3.4990e-04 5.4931e-05

60 1.5814e-03 3.1085e-03 3.4971e-04 5.4739e-05

80 1.5810e-03 3.1085e-03 3.4966e-04 5.4694e-05

Table 4 Errors in ŨN,h(t) for f given by (6.2) and α = 1/2.

N t = 0.0 t = 1.0 t = 3.0 t = 5.0

5 1.7901e-01 3.2777e-01 7.1592e-02 2.3052e-02

10 3.6276e-02 8.3494e-02 1.9718e-03 3.2560e-03

20 3.6340e-03 1.0699e-02 6.9519e-04 7.5804e-04

30 2.2102e-03 2.7341e-03 6.9519e-04 6.4513e-04

40 2.5698e-03 2.2754e-03 6.9519e-04 6.4710e-04

50 2.6234e-03 2.2754e-03 6.9519e-04 6.5022e-04

60 2.6310e-03 2.2754e-03 6.9519e-04 6.4920e-04

80 2.6336e-03 2.2754e-03 6.9519e-04 6.4935e-04
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norm. For α = −1/2, we make the very simple choice f(x, t) = e−t/4, which has the Laplace

transform f̂(x, z) = (z + 1
4 )−1. Note that f(x, t) does not vanish for x ∈ ∂Ω.

Table 1 shows the errors in the maximum-norm for each method when t = 2 (using method 1
with N∗ = 60 to generate the “exact” solution). We see that for the first method, nothing is
gained by choosing N larger than 10, whereas for the second and third methods we should use
N in the range from 20 to 30.

Example 6.2 We now choose

f(x, t) =

{
t(2 − t)2, for 0 < t < 2,

0, for t > 2,
(6.2)

and find that f̂(x, z) = 6z−4 − 8z−3 + 4z−2 − (6z−4 + 4z−3)e−2z . Since ‖f̂‖L∞,Σωβ ,γ = ∞ for

all γ > 0, we cannot apply the error bounds for our first or second method. (In practice, our

code failed for these methods due to floating-point overflow in the evaluation of f̂ .) Note that

the regularity results of Theorems 2.2 and 2.3 apply because f(x, 0) = 0 and
∫ T
0
‖ftt‖L∞ dt <∞.

Tables 2, 3 and 4 show, for α = −1/2, 0 and +1/2, respectively, the maximum-norm errors
for our third method at four different times (using method 3 with N∗ = 120 to generate the
“exact” solution). As before, modest values of N suffice to reduce the quadrature error to a
level comensurate with the accuracy of the spatial discretization. Of course, in practice there
is no point in reconstructing the initial data, but the errors at t = 0 give an indication of
the accuracy for small t > 0. Observe that the accuracy is best in the middle of the time
interval [0, T ] = [0, 5]; cf. our discussion in (McLean and Thomée, to appear, §6.1).

To conclude, we remark that for our methods to be competitive, one needs to develop iter-
ative methods suitable for the elliptic problems occurring. We envisage future work addressing
this question; a preliminary study appears in the final section of Sheen, Sloan and Thomée
(2003).

A. Proof of the resolvent estimate in maximum-norm for the Laplacian

In this appendix we give a simple direct proof of the resolvent estimate (2.2) in the case when A
is the closure of −∆, under homogeneous Dirichlet boundary conditions, in B = L∞ = L∞(Ω).
For B = C(Ω̄), the corresponding result is contained in the technically rather complicated paper
Stewart (1974), for more general elliptic operators. The approach in the present proof is to first
show that the semigroup E(t) in L∞, generated by ∆ is, in fact, analytic and bounded in the
variable t, in any sector in the right half plane. The proof is based on material from Arendt
(2005–2006) and Ouhabaz (1995), as put together in Crouzeix (2008).

Theorem A.1 Let E(t) = e∆t be the semigroup in L∞ generated by ∆. Then E(t) extends
to an analytic semigroup for Re t > 0, and for any ϕ ∈ (0, 1

2π) we have

‖E(t)v‖L∞ 6 Cϕ‖v‖L∞, for t ∈ Σϕ, with Cϕ =
( 2

1 − sinϕ

)d/2
.

Proof. We shall use that u(t) = E(t)v is the solution of the initial-value problem

∂tu+Au = 0, in Ω, u = 0 on ∂Ω, for t > 0, with u(0) = v. (A.1)
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With {λj}
∞
j=1, {ϕj}

∞
j=1 the eigenvalues and orthonormal eigenfunctions of −∆, we have

E(t)v =

∞∑

j=0

e−λjt (v, ϕj)ϕj , for t > 0, v ∈ L2, (A.2)

from which we see at once that E(t) is a contraction semigroup in L2, which extends to an
analytic semigroup in the right half-plane Re t > 0. By Parseval’s relation E(t) is an isometry
on the imaginary axis. The Sobolev imbedding theorem shows that ‖ϕj‖L∞ 6 C‖Asϕj‖L2

= λsj
for s > d/2, so we see that E(t)v is defined by (A.2) also for v ∈ L∞ and Re t > 0.

The solution of (A.1) may thus be written in the form

(E(t)v)(x) =

∫

Ω

k(x, y, t) v(y) dy, for x ∈ Ω, t > 0, k(x, y, t) =
∞∑

j=0

e−λjtϕj(x)ϕj(y). (A.3)

We remark that E(t)v ∈ C0(Ω̄) for t > 0, but that E(t)v converges to v in L∞ as t → 0 only
when v ∈ C0(Ω̄).

For the pure initial-value problem on R
d, the representation (A.3) holds with k(x, y, t)

replaced by the Gaussian kernel G(x, y, t) = (4πt)−d/2e−|x−y|2/(4t), and, since both k(x, ·, ·)
and G(x, ·, ·) satisfy the heat equation, the maximum-principle on Ω shows

0 < k(x, y, t) 6 G(x, y, t), for x, y ∈ Ω, t > 0.

From this we deduce, with ‖A‖Lp,Lq denoting the operator norm of A : Lp → Lq,

‖E(t)‖L2,L∞ = ‖E(t)‖L1,L2
6 ‖G(·, 0, t)‖L2(Rd) = (8πt)−d/4, for t > 0. (A.4)

Writing t = τ + iσ we have by the semigroup property that E(t) = E(1
2τ)E(iσ)E(1

2τ) for
τ > 0 and hence

‖E(t)‖L1,L∞ 6 ‖E(1
2τ)‖L2,L∞‖E(iσ)‖L2,L2

‖E(1
2τ)‖L1,L2

6 (4πRe t)−d/2.

We now note that (A.3) holds for t ∈ Σϕ, for any ϕ ∈ (0, 1
2π), and that the kernel k(·, ·, t)

is analytic there. To show the desired result it therefore suffices to demonstrate that

‖k(x, ·, t)‖L1
6 Cϕ, for x ∈ Ω, t ∈ Σϕ. (A.5)

For this we shall need the following consequence of the Phragmen–Lindelöf theorem.

Lemma A.1 Let f(z) be analytic in Σθ, with θ ∈ (0, 1
2π), and assume

|f(z)| 6 M, for z ∈ Σθ and |f(x)| 6 M e−b/x, for x ∈ R+.

Then, for ϕ ∈ (0, θ) we have

|f(z)| 6 M e−κ b/|z|, for z ∈ Σϕ, where κ =
sin(θ − ϕ)

sin θ
.
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Proof. We set g+(z) = f(z−1) exp(i b eiθ z/ sin θ). After simple calculations one finds

|g+(z)| 6 M for arg z = −θ, 0, and |g+(z)| 6 M eb|z|/ sin θ, for arg z ∈ [−θ, 0].

From the Phragmen–Lindelöf theorem it follows that |g+(z)| 6 M for arg z ∈ [−θ, 0]. Hence,
for arg z ∈ (0, ϕ),

|f(z)| = |g+(z−1) exp
(
− i b eiθz−1/ sin θ

)
| 6 M exp

(
− b |z|−1 sin(θ − ω)/ sin θ

)
6 M e−κb/|z|.

Using instead g−(z) = f(z−1) exp(−i b e−iθ z/ sin θ), the analogous argument shows the result
for arg z ∈ (−ϕ, 0). �

In the proof of (A.5) we shall use a result of Dunford and Pettis concerning the norm of an
operator K : L1 → L∞, defined by a kernel k(x, y), which states that

‖K‖L1,L∞ = ‖k‖L∞(Ω×Ω) if (Kv)(x) =

∫

Ω

k(x, y)v(y) dy.

Using this it follows from (A.4) that

‖k(·, ·, t)‖L∞(Ω̄×Ω̄) = ‖E(t)‖L1,L∞ 6 (4πRe t)−d/2, for Re t > 0,

and it thus follows that

|(4πt)d/2k(x, y, t)| 6

{
(cos θ)−d/2, for t ∈ Σθ, 0 < θ < 1

2π,

e−|x−y|2/(4t), for t ∈ R+, x, y ∈ Ω.

Applying Lemma A.1 to the function f(t) = (4πt)d/2 k(x, y, t) gives, with ϕ = arg t ∈ [0, θ],

|(4πt)d/2 k(x, y, t)| 6 (cos θ)−d/2 e−κ |x−y|2/(4|t|)
6

( 4π|t|

κ cos θ

)d/2
G(x, y, |t|/κ),

and hence

‖E(t)‖L∞,L∞ 6 sup
x∈Ω

‖k(x, ·, t)‖L1

6 (4π|t|)−d/2
( 4π|t|

κ cos θ

)d/2 ∫

Rd

G(x, y, |t|/κ) dy =
( tan θ

sin(θ − ϕ)

)d/2
.

Choosing θ = 1
2 (1

2π + ϕ) we find easily

tan θ

sin(θ − ϕ)
=

2 sin θ

1 − sinϕ
6

2

1 − sinϕ
,

which completes the proof of the theorem. �

We are now in a position to show the desired resolvent estimate (2.2).

Theorem A.2 For any ϕ ∈ (0, 1
2π) there is a constant Cϕ such that

‖(zI +∆)−1v‖L∞ 6
Cϕ

1 + |z|
‖v‖L∞, for z 6∈ Σϕ, v ∈ L∞.
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Proof. For z = |z| eiω with ϕ 6 ω 6 1
2π (negative ω may be treated analogously), we have

with ψ = 1
2ω − 1

2π, after changing the contour of integration from R+ to eiψR+,

(z I +∆)−1 = −eiψ
∫ ∞

0

ezte
iψ

E(teiψ) dt.

In view of Theorem A.1 this shows

‖(z I +∆)−1‖L∞ 6

( 2

1 − sinϕ

)d/2 ∫ ∞

0

e− cos(ω/2)|z| t dt 6
1

|z| cos(1
2ϕ)

( 2

1 − sinϕ

)d/2

Since (−∆)−1 is bounded in L∞, the resolvent is bounded for small |z|, which completes the
proof. �
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