2018 Honours Projects in Applied Mathematics

This booklet contains descriptions of thesis projects offered for Honours year students in Applied Mathematics. Honours candidates are strongly encouraged to contact their preferred supervisor as early as possible to discuss potential projects and to make sure they have any requisite background knowledge. More information about the Honours year is available by emailing the Applied Mathematics honours coordinator or at

Contents

1 Biomathematics 1
2 Computational Mathematics 5
3 Fluid dynamics, oceanography and meteorology 8
4 Mathematics Education 12
5 Nonlinear Phenomena 13
6 Optimisation 16

1 Biomathematics

1.1 Adelle Coster

Email A.Coster@unsw.edu.au if you are interested in these or other biomathematical projects. Please include some information about your mathematical background and interests.

1.1.1 The insulin signalling pathway in adipocytes: a mathematical investigation.

The insulin signalling pathway in adipocytes (fat cells) is the main controller of the uptake of glucose in the cells. Understanding of this system is vital in the investigation of diabetes, which is a deficiency in this control system. Projects in this area include the development a mathematical description of the movement of the vesicles (small membrane spheres) containing glucose transporter proteins, and also the diffusion of the proteins if the vesicle fuses with the cell surface, and also the analysis of the biochemical signalling pathway from the insulin receptor. These will involve analysis of differential equations and possibly some computational simulations of the system. Experimental data for comparison with the models will be available.
1.1.2 Do glucose transporters queue to get to the cell surface?

Cells transport glucose into their interior via protein channels. In adipocytes (fat cells) glucose uptake is regulated by insulin, as a dynamic balance between exocytosis (outward transport) and endocytosis (inward transport) of the proteins. The proteins are, however, packeted into small vesicles (spheres of membrane) when transported. One characterisation of the observed transport behaviour utilises queueing theory. This idea stems from the presence of the microtubules that cross the cytoplasm of the cells. Microtubules are implicated in the sorting of different endocytic vesicular contents and have well characterised molecular motors which control the movement of vesicles down their lengths. Vesicles carrying the proteins have been observed to be transported along microtubules. Could these act as a scaffold for the vesicles, which would then form queues waiting for exocytosis? This project will model the recycling system as a closed Markovian queueing network and explore what characteristics of the network may be responsible for the transitory behaviour when insulin is applied, initiating protein transport. Experimental data for comparison will be available and the investigation will have both theoretical and computational aspects.

1.1.3 Dynamics and stability of cardiac pacemaker cells.

The ionic currents underlying the electrical behaviour of pacemaker cells in the heart may be described using coupled nonlinear differential equations. These have been derived in a number of different models from a wide range of electrophysiological data in the literature. In this project, the dynamics of this system, both in single cells, and coupled networks of cells will be explored, and the robustness of the models to changes in parameters ascertained. Different models for the sinoatrial node cells will be assessed and their different responses correlated to the ionic currents, with a view to further optimising the system. This project will be both analytical and computational.

1.1.4 The interaction of actin and tropomyosin.

This project models the dynamic interactions of two proteins, actin and tropomyosin. With experimental partners in the Faculty of Medicine the aim is to resolve how filaments of these proteins are assembled. This is important because these proteins form the cytoskeleton (the internal scaffolding) of cells. Understanding of their interactions can then be used in the future to understand how drugs can target specific components and functions of the cytoskeleton that are hijacked in cancer cells. This project focuses on the formulation of a quantitative dynamical description of the processes taking place, using experimental information to estimate meaningful and quantitative parameters to robustly test and adapt the models of the dynamical systems, enabling the differentiation between different hypotheses of mechanism and function in this interaction. Analysis of microscopy image sequences and deconstruction into a basis set for the filaments will be required to estimate the rate constants of the processes. Computational work for image processing as well as analysis will be required alongside dynamical systems modelling.

1.1.5 Modelling Myelinated Nerve Function.

Pacemaking in cardiac and neuronal cells is primarily controlled by the interaction between different voltage gated ion channels. An existing mathematical model of the human motor axon (Bostock et al (1991) J Physiol 441, 537557) utilises coupled differential equations to describe the electrical activity within the nerve. This model will be explored to interpret the measured responses to extended hyperpolarization and the contribution of different ion currents to the transmission of signals. It will also investigate the responses of sensory neurons to strong long-lasting hyperpolarization and contrast with motor neurons. Extensions to the model will then
be made to incorporate additional inhomogeneities within the neuron structure. This project will include analysis and development of coupled differential equations, numerical simulations and the optimisation of the model using data from experimental collaborators.

1.2 Bruce Henry

1.2.1 Pattern formation with anomalous diffusion: How did the leopard get its spots?

This is one of many examples of pattern formation that has been mathematically modelled using reaction-diffusion equations. In this mathematical model the diffusion is treated as standard Brownian motion. In recent years there have been numerous experiments in biological systems showing diffusion that cannot be treated as standard Brownian motion. How can we model this anomalous diffusion mathematically and how can we model pattern formation in these systems?

1.2.2 Mathematical modelling of plaque build up in Alzheimers disease.

Currently about 150,000 Australians suffer from cognitive impairment due to Alzheimers disease and this number is expected to double over the next few decades. One of the features of this disease at the neural level is the accumulation of extracellular amyloid beta plaque but the mechanism for this accumulation and the role that it plays in Alzheimers is not yet understood. In this project you will review the literature in this field and you will develop mathematical models for the growth of plaque deposits.

1.3 John Murray

1.3.1 Mathematical modeling of the persistence of HIV infection.

Although antiretroviral therapy suppresses HIV infection to low levels, it is not eradicated. There is considerable controversy as to the reasons for this. Under NHMRC funded projects our group has extensively analysed the different components of HIV infection, and also obtained measures of the immune response. This project will involve mathematical modeling that incorporates some of this data in an effort to better understand the interaction of the many processes that contribute to the maintenance of HIV. Identifying which of these are dominant can better direct efforts in the goal of eliminating HIV infection. This project will involve constructing differential equation models, fitting these to data, and some statistical analysis. This will be performed in Matlab.

1.3.2 Within-host dynamics of emerging drug resistant hepatitis B virus.

Approximately 400 million people worldwide are chronically infected with hepatitis B virus (HBV). Over the long-term it can lead to cirrhosis of the liver and hepatocellular carcinoma. Viral replication can be limited through the use of antiviral drugs but these can fail with the development of drug resistance. Combination therapy is now being used to combat this type of failure. This project will include mathematical modelling of the development of drug resistant HBV, and analyse the advantages of different schedules of drug combinations.

1.3.3 Estimating the impact of HIV gene therapy

Gene therapy is being investigated by a number of groups worldwide as an alternative to daily antiretroviral therapy (ART) that suffers from the constant dosing requirement, side effects and
expense. ART has also failed to provide a cure. Calimmune has developed a gene therapy that attempts to mimic the replacement of the Berlin Patients susceptible immune cells with ones that do not contain the main HIV coreceptor. The Berlin Patient was subsequently cured. An ARC Linkage grant with Calimmune is investigating this gene therapy in the laboratory and through mathematical modelling to examine the likely impact of this therapeutic if delivered to a HIV infected individual. This project would explore some of the data from those experiments (performed by someone else) and use mathematical modelling to investigate a number of scenarios.

1.4 Infection Analytics Program at the Kirby Institute

If you are interested in any of these projects or other projects related to modelling the within host dynamics of infection and immunity in malaria please contact us

- David Khoury: dkhoury@kirby.unsw.edu.au
- Deborah Cromer: d.cromer@unsw.edu.au
- Miles Davenport: m.davenport@unsw.edu.au

1.4.1 Modelling Parasite maturation and synchrony (with Adelle Coster)

Malaria parasites tend to mature in synchrony in an infected host, and the various malaria species almost all have life cycle times that are a multiple of 24. Our recently published work shows that in acutely ill mice, parasites develop more slowly. This suggests the need for a better understanding of parasite development, and how the parasite controls its development time. An important starting point to this is to understand the normal development process. For example, we know that if you put a highly synchronised parasite population (a lot of very young parasites) in a culture dish, the parasites will take a mean time of 48 hrs to reach maturity and rupture, but there will be some parasites that mature more quickly and some more slowly. This project involves developing a series of models of the development process to understand how the parasite controls its maturation time.

Our collaborator (Danny Wilson) will run an in-vitro experiment that aims to directly quantify the distribution parasite development times by regularly sampling near the time when we expect most of these parasites to reach maturity and rupture. In parallel, this project will involve constructing multiple models of the parasite maturation process, potentially by adapting existing ODE and PDE models of similar processes, but may also involve generating novel mathematical models. This project would then aim to fit the models to experimental data and utilise model selection criteria to identify which model best explains the parasite development process.

1.4.2 Modelling drug efficacy when treatment is given at different stages before rupture (with Adelle Coster)

People often determine antimalarial drug efficacy based on how quickly the numbers of parasites present in the blood decline after drug treatment. However this approach means drug efficacy is not actually assessed immediately following drug administration, which is the critical time when patients are most susceptible to fatal outcomes. One important factor in assessing drug efficacy in this critical time, is how well they can block late-stage parasites from maturing.

Our collaborator (Danny Wilson) is continuing to perform in-vitro experiments that compare “how late” different drugs can be given in the parasite development cycle and still effectively stop parasites reaching maturity and proliferating. This data is difficult to interpret as drug
susceptibility is related both to the age of the parasite and the length of exposure to the drug. Therefore, this dynamic system is best explored using modelling approaches.

This project would aim to construct a model that relates parasite development, the stage of parasites at the time of treatment, the mechanisms of drug action and duration of exposure of the parasites to the drugs. This model would then be used to develop novel metrics of antimalarial efficacy that can be used to compare the potential of different antimalarials for clinical use. The modelling is likely to require use of partial and ordinary differential equation models, and building or adapting other models of related processes. This project will aim to fit the models of drug action and duration of exposure to experimental data using techniques in non-linear regression, and in so doing quantify novel metrics of drug efficacy for different antimalarial agents.

1.4.3 Fitting data of patients treated with antimalarials to understand population level trends (with Jake Oliver)

The current gold-standard method to assess drug efficacy is to consider the slope of the decline in parasite numbers (after some "lag-phase"). Steeper slopes imply better drug efficacy. However this is a rather simplistic approach and as a result a range of experiments our collaborators have performed in mice and humans there is growing evidence that this is not a good model of drug action and efficacy. We have developed an improved model based on the growth rate of parasites before treatment, the developmental stage of parasites at the time of treatment, the efficacy of the drug at killing parasites and the subsequent host efficacy of removing those parasites. However, one of the restrictions of our model is that it requires past knowledge of each patients infection before they were treated, which is not available in a clinical setting. This project would involve extending our existing model into one that can be used in a field setting. This would be done by making use of a data set including over 200 patients in which parasite numbers are monitored after treatment. The new model would be based on the fact that when people arrive at hospital for treatment there are population distributions both in the growth rates of parasites and in the developmental stages of parasites present. The project would then aim to develop a likelihood function that includes the random-effects of these population distributions, to fit this to the patient data discussed above. The end result of the project would be to deduce information at a population level about the distribution of parasite growth rates at enrolment as well as estimates of drug efficacy.

1.5 Anna Cai

Please contact Dr Cai directly (a.cai@unsw.edu.au) for potential honours projects.

2 Computational Mathematics

2.1 Zdravko Botev

2.1.1 High-Dimensional numerical integration with applications in Bayesian statistics.

One of the simplest mathematical models for measurements \(\mathbf{y} = (y_1, \ldots, y_m)^\top \) requires that we estimate or approximate accurately a high dimensional integral of the form

\[
\int \int \exp \left(-\frac{\| \mathbf{y} - X \mathbf{\beta} \|^2}{2\sigma^2} - m \ln \sigma - \sum_i \lambda_i |\beta_i/\sigma|^\alpha \right) \, d\mathbf{\beta} d\sigma,
\]
where $\alpha \in (0,1]$ and $\lambda_i > 0$ are regularization parameters and X is a fixed matrix. In this project you will explore a nested integration method for computing integrals like the above one. The project will not only explore the estimation of high-dimensional integrals, but also their relation to random variable simulation in Bayesian statistics.

2.1.2 Monte Carlo splitting method for integrals with quasi-monotone integrands.

Consider the numerical approximation of the small probability $\ell = P(S(X) \geq \gamma)$, where X is drawn from a d-dimensional probability density function f, the threshold γ is large enough to make ℓ very small, and S is a quasi-monotone function (e.g., $x_i \leq y_i$, $i = 1, \ldots, d$ implies $S(x) \leq S(y)$). We thus need to compute the high-dimensional integral

$$\ell = \int_{S(x) \geq \gamma} f(x) \, dx$$

Such high-dimensional integrals with non-smooth integrands frequently arise in portfolio credit risk assessment, where estimating ℓ is of interest, because it is the probability of bankruptcy or default.

In this project you will explore the properties of a Monte Carlo splitting algorithm for computing ℓ. Monte Carlo splitting is a method that splits paths of a random process evolving over time. This project may involve collaboration with researchers in Rennes in France and Montreal in Canada.

2.2 Quoc Thong Le Gia

2.2.1 Approximate cloaking simulation

Optical cloaking has been and continues to be a fascinating subject. Invisibility has been a subject of human fascination for millennia, from the Greek legend of Perseus versus Medusa to the more recent *The Invisible Man*. Since 2005 there has been a wave of serious theoretical proposals in the physics literature, and a widely reported experiment by Schurig et al., for cloaking devices – structures that would not only render an object invisible but also undetectable to electromagnetic waves. The mathematical foundations of optical cloaking are described in an excellent article by Greenleaf et.al. and Vogelius et.al.

The transformation optics approach to cloaking uses a singular change of coordinates which blows up a point to the region being cloaked, is singular and hence it is difficult to analyse theoretically. Hence a rigorous numerical simulation will shed the light on the problem significantly.

In the project, you will investigate the numerical simulation of an approximate cloak over a circular domain with a fixed wave number.

2.2.2 Analysis of changing data and applications

A unified framework for performing classification, regression, manifold learning, and related tasks from data analysis consists of approximating functions of the form $f : X \subset \mathbb{R}^d \mapsto \mathbb{R}^q$ (for some fixed $d, q \in \mathbb{N}$), given a finite amount of information about the function. We will refer to problems of changing data as those where the functions of interest are known on dissimilar domains.

As an application of changing data problem, we will look at a sequence of MRI brain scans of patients with Alzheimer’s disease (AD) at regular intervals over several years. It is known
that the cortical thickness will change along with the disease’s progression. A changing-data problem of clinical significance is quantifying this change given a sequence of MRI brain scans for a particular patient, and using this information to discern between healthy and AD patients.

We also look at the mathematical tools which could be used to solve the changing data problem, namely polynomial frame operators, scattered data approximation methods, etc.

2.3 Bill McLean

2.3.1 Hierarchical Matrices.

In 1999, Wolfgang Hackbusch introduced the notion of a hierarchical matrix or H-matrix. The idea grew out of a computational algorithm for solving integral equations, known as panel clustering. For an $N \times N$, dense matrix, computing a matrix-vector product in the obvious way costs N^2 operations. However, for a wide class of matrices arising as discretizations of integral and other linear operators, an H-matrix representation uses only $O(N)$ storage and allows the computation of a matrix-vector product using only $O(N)$ operations, accurate to within the order of the discretization error. It is even possible to develop a whole fast algebra of matrices, with many interesting applications for large-scale numerical simulations. A project in this area would involve a mix of theory and computation, depending on the background of the student.

2.3.2 Approximating the fractional powers of an elliptic differential operator

A number of interesting applications lead to fractional order partial differential equations, and in particular to equations involving a fractional power of an elliptic operator. Computational schemes for solving such equations rely on efficient and accurate numerical methods to approximate such an operator. The aim of the project is to compare a few such methods, setting out the pros and cons of each approach.

2.3.3 Localization of eigenfunctions

If a quantum system has a regular potential, then a typical eigenstate is a smooth, oscillatory function with global support. However, when the potential energy is sufficiently disordered, a phenomenon called Anderson localization can occur, in which an eigenstate is a spike, that is, large in a small region of the spatial domain with rapid decay away from that region. The project will involve a mix of studying the known theoretical results on this effect, and performing direct numerical simulations.

2.4 Thanh Tran

2.4.1 The role of the Landau-Lifshitz-Gilbert equation in the theory of novel magnetic memories.

One of the hallmarks of modern society is the increasing demand for the large data storage which can be rapidly and efficiently accessed. The most important devices for information storage are magnetic memories which are used in, for example, mobile phones, credit cards, televisions, and computer hard drives.

Submicron-sized ferromagnetic elements are the main building blocks of data storage devices. They preserve magnetic orientation for a long time, allowing bits of information to be encoded as directions of the magnetisation vector. The stored information can be modified by an external magnetic field.
A well-known model for magnetisation is the Landau-Lifshitz-Gilbert equation. The equation possesses complex mathematical properties such as nonconvex side-constraints, strongly nonlinear terms and the appearance of singularities. These properties demand sophisticated numerical approximations.

In this project you will learn different numerical methods to solve the equation. Depending on your needs and interests, there are open problems to cut your teeth on.

2.4.2 Problems in random domains.

In many industries (e.g., in aerospace engineering) random discrepancies between the ideal geometries conceived in the design phase and their actual realisation may lead to considerable variations in expected outcomes.

The effect of randomness in domains is even more dramatic in manufacturing of nano-devices (e.g., data storage devices governed by the Landau-Lifshitz-Gilbert equation). Indeed, under certain resolution, surfaces of these devices become rough, and a minor discrepancy results in relatively large adverse effects.

In this project you will learn how shape calculus can be used to deal with problems on random domains.

2.4.3 Boundary element methods.

Boundary element methods have long been used in engineering to solve boundary value problems. These problems are formulated from many physical phenomena, ranging from mechanical engineering (e.g., in car design) to petroleum engineering (e.g., for simulation of fractured reservoirs). In this project, you will first learn basic concepts of boundary element methods, how to implement and analyse efficiency and accuracy of the methods. Then, depending on your needs and interests, you will use the methods to solve practical problems in engineering or geodesy. Problems in geodesy will involve programming with data collected by a NASA satellite, which may contain up to almost 30 million points.

3 Fluid dynamics, oceanography and meteorology

3.1 Gary Froyland

3.1.1 Lagrangian Coherent Structures in Ocean and Atmosphere Models

The ocean and atmosphere display complex nonlinear behaviour, whose underlying evolution rules change over time due to external and internal influences. Mixing processes of in the atmosphere and the ocean are also complex, but carry important geometric transport information. Using the latest models or observational data, and methods from dynamical systems, and elliptic PDEs, this project will identify and track over time those geometric structures that mix least. Known examples of such structures are eddies and gyres in the ocean, and vortices in the atmosphere, however, there are likely many undiscovered coherent pathways in these geophysical flows. There is also the possibility for the project to further develop mathematical theory and/or algorithms to treat one or more specific challenges arising in these application areas. This could a joint project with Mark Holzer or Shane Keating. There is a possibility to undertake a joint project with Mark Holzer or Shane Keating.
3.2 Mark Holzer

3.2.1 New constraints on large-scale tropospheric transport from global trace-gas measurements.

Use forward and/or inverse modeling of trace gases with a range of chemical lifetimes to extract the transport paths and timescales with which the highly turbulent atmosphere distributes pollutants and greenhouse gases.

3.2.2 Ocean biogeochemistry.

Couple models of biogeochemical cycles to ocean circulation models and to each other to quantify the key nutrient cycles and elemental ratios in the ocean. Learn about the oceans biological pump and atmospheric CO2 regulation.

3.2.3 Construction of matrix models for geophysical flows.

Develop numerically efficient models of geophysical flows within Matlab and investigate their transport properties using Green-function diagnostics.

3.2.4 Turbulence modeling.

Develop stochastic turbulence models and investigate their transport using Green-function tracers.

3.3 Shane Keating

3.3.1 Simulating fractal curves in turbulent fluid flows

A patch of dye immersed in a turbulent flow tends to be stretched and deformed into strikingly convoluted, fractal-like patterns, like cream stirred into coffee. This fractal structure provides a fingerprint of the underlying flow and is intimately linked with the processes of stirring and mixing in turbulence. In this project, we will investigate the theoretical connection between the fractal geometry of material fields (like dye) and diffusion in turbulent flows. We will also investigate novel stochastic methods for generating fractal Gaussian fields with the goal of representing unresolved mixing in numerical simulations of turbulence. This project is co-supervised by Zdravko Botev. Some knowledge of Matlab will be required.

3.3.2 Investigating transport pathways in the ocean with Lagrangian Coherent Structures

In this project, you will work with measurements from high frequency (HF) radar along the NSW coastline to locate Lagrangian coherent structures (LCS) hidden in the ocean surface currents. The LCSs obtained from HF radar measurements provide a unique way to visualize the evolving structure of dynamic ocean features such as fronts, filaments and eddies in the Tasman Sea. These structures govern the transport pathways of particles in the ocean (such as oil, or fish larvae). You will investigate how different flow regimes affect particle dispersion at the ocean surface. This project will work with HF radar measurements of ocean current velocity, together with satellite imagery of sea surface temperature and chlorophyll-a.

This project will be co-supervised with Dr Matthew Archer and A/Prof Moninya Roughan.
3.3.3 Submesoscale ocean dynamics

Submesoscale ocean dynamics (100m to 100km) play a critical but poorly understood role in the ocean, from planet-scale to plankton scale. The impact of submesoscale fronts on heat and carbon exchange between the deep ocean and the atmosphere represents a key uncertainty in Earth’s climate. Submesoscale eddies modulate the ocean food chain from top predators to phytoplankton, and submesocales strongly impact the dispersion of ocean-borne material such as nutrients, marine biota, and pollutants. Research topics in this area include:

- Ocean dynamics as a driver of productivity. The student will configure a coupled hydrodynamic biogeochemical version of the Regional Ocean Modeling System to understand the role of submesoscale eddies in the 3D distribution of chlorophyll-a in the East Australian Current.

- Diagnosing submesoscale ocean eddies. The student will use a combination of ocean model output and observational data from coastal radar, moorings, and satellite observations to quantify the properties of submesoscale eddies, including lifespan, size, and shedding frequencies.

- Stochastic parameterization of submesoscale. The student will examine novel stochastic and Lagrangian methods for representing unresolved submesoscale dynamics in ocean climate models. The methods will be tested using both numerical and observational ocean data.

These projects will be co-supervised by Moninya Roughan. Some exposure to fluid dynamics is useful but not required. Matlab will be used.

3.4 Trevor McDougall

3.4.1 Ocean mixing and the absolute velocity in the ocean

For much of the history of physical oceanography a challenging quest has been to deduce the mean velocity of the ocean from shipboard measurements of density as a function of depth, longitude and latitude. These measurements constrain the vertical variations of the horizontal velocity, but do not constrain a depth-independent offset, and solving for this reference value of velocity has been a major focus of blue water oceanography during the whole of the 20th century. Recent theoretical work has yielded a closed expression for the absolute velocity which includes the depth-independent reference velocity. This closed expression reveals the role of ocean mixing processes in driving the mean circulation, and it also demonstrates the importance of the geometry of surfaces of constant temperature and salinity. This project will analyze numerical ocean model output to explore the dominant balances which allow the ocean to move, concentrating in the Southern Ocean. There are several levels of sophistication that can be applied to this closed expression for the absolute velocity, and the project will aim to pick the lowest-hanging fruit first, concentrating on finding spatial regions where the inverse technique is most likely to work, using a recently deduced predictive measure of the likely signal-to-noise of the inversion. The overall aim of doing inverse studies such as this is to estimate the strength of mixing processes in large regions of the ocean. These mixing intensities are needed as inputs into ocean and climate models. This project is co-supervised by Prof. Trevor McDougall and Dr Sjoerd Groeskamp.

3.4.2 Forming the integrating factor for Neutral Density in the ocean

The concept of a neutral tangent plane in the ocean is well established, and it describes the local plane in which the very strong lateral mixing of mesoscale eddies occurs. The diffusivity...
of a passive tracer in this plane is ten million times greater than in the direction normal to this plane. Because of this large difference in the amount of mixing in these different directions, it is important for oceanography and for climate science to be able to accurately calculate the neutral direction in space. While the local direction is unambiguous, it is difficult to find a globally extensive surface. We do have a differential equation for the integrating factor needed to form Neutral Density; that is, for the integrating factor that when multiplied by a known density gradient will give the gradient of Neutral Density. This project will explore ways of evaluating the integrating factor in the ocean, as a necessary prelude to calculating Neutral Density in space. This project is co-supervised by Prof Trevor McDougall, Dr Paul Barker and Dr Casimir de Lavergne.

3.5 Jan Zika

3.5.1 Distilling the oceans role in climate using thermodynamic diagrams

Understanding how much and to what depth heat will be pumped into the ocean is critical to predict future surface temperature and sea-level rise.

This study will investigate vertical heat transport in the ocean using novel thermodynamic diagrams. Using such diagrams, which have origins in classical thermodynamics, one can relate the circulation to surface heating and cooling processes and mixing.

Solutions for such circulations are tractable both from analytical, simple numerical and observational points of view. The student will consider both idealised cases and make use of the most recent observations. These will be combined with constraints based on theories of ocean mixing and energetics to generate estimates of the deep overturning circulation and its role in transient climate change.

3.5.2 Linking the seasonal cycle of ocean water masses to transient climate change

In boreal winter the North Atlantic and Pacific Oceans become cold, dense and turbulent. Oxygen, carbon and other substances are drawn out of the atmosphere and ventilated into the deep ocean. In boreal summer, as the surface layers in the north warm, cooling and ventilation begins in the southern hemisphere in earnest.

The process of seasonal ventilation dictates the oceans role in climate - both present and future. Only in the last decade has a systematic understanding of seasonal ventilation become possible due to the presence of thousands of autonomous buoys (ARGO) and satellites measuring upper ocean temperature and salinity. Likewise never has the need to quantify it been more pressing.

This project will combine the latest observations to generate a quantitative picture of the formation, ventilation and destruction of cold dense water masses in both hemispheres. A key novelty of this project will be the use the water-mass transformation framework. Using this framework variability in water mass properties into that due to surface heating and cooling, evaporation and precipitation, mixing and energetic drivers such as wind forcing.

3.5.3 Asymmetry of the oceans thermohaline circulation

The ocean is highly turbulent. Pathways of free-floating buoys are chaotic and circulation patterns are dominated by mesoscale eddies the oceans equivalent to atmospheric storms. The
ocean is at the same time organized. Substances injected into the ocean follow broad and
distinct routes near the sea surface from the Pacific to the Atlantic Ocean. As a result the North
Pacific and North Atlantic Oceans are in marked contrast. The Pacific is cold and fresh and
the Atlantic is warm and salty. Known as the thermohaline circulation, this helps maintain
Europe’s relatively mild climate.

This project will explore the link between the asymmetry in northern hemisphere climates,
the thermohaline circulation and the atmospheric forcing which sets the eventual temperature
and salinity of sea-water. The project will pivot on the hypothesis that, by accident of geography
and the position of southern hemisphere winds, warm saline water preferentially flows into the
Atlantic. Moreover these effects will dictate the stability of the thermohaline circulation and
European climate over coming centuries.

4 Mathematics Education

4.1 Chris Tisdell

4.1.1 Digital resources in mathematics: What makes them effective for learning?
The past 10 years has seen an explosion in the creation of digital resources for learning math-
ematics via the web. This thesis will investigate best practice in the design, development and
delivery of digital learning resources and will discover how students engage with them. This
project is suitable for anyone who is passionate about quality in the teaching and learning of
mathematics via digital platforms.

4.1.2 Mathematical learning communities
The first year university student experience plays an important formative role in shaping student
attitudes and presents an opportunity to build a sense of community and enhance approaches
to learning. This project will investigate the idea of a learning community for those first-year
students taking mathematics courses as UNSW. The project will explore questions such as:
What is a learning community in mathematics? Do they exist at UNSW? What makes an
effective learning community in mathematics? What are the benefits of peer-to-peer learning?
This project will be suitable for anyone who is interested in building better learning communities
in mathematics at UNSW.

4.1.3 Peer to Peer Support for Mathematics Students
This project will investigate the concept of peer-to-peer learning for students in mathematics
courses. Important research questions associated with this investigation include: What models
are there for peer-to-peer learning? What are student and teacher attitudes towards peer-to-
peer learning? And what works best?

4.1.4 Learning Mathematics on the Move via Mobile Devices
Smart phones, tablets and laptops have become central technological tools for learning in the
past 10 years. This project will look at best practice for mobile learning (MLearning) for
mathematics. What is current practice and where are we going? What works well and what
can be improved?
5 Nonlinear Phenomena

5.1 Gary Froyland

5.1.1 Topics in dynamical systems and ergodic theory.

Ergodic theory is the study of the dynamics of ensembles of points, in contrast to topological dynamics, which focusses on the dynamics of single points. A number of theoretical Honours projects are available in dynamical systems and ergodic theory, aiming at developing new mathematics to analyse the complex behaviour of nonlinear dynamical systems. Depending on your background, these projects may involve mathematics from Ergodic Theory, Functional Analysis, Measure Theory, Nonlinear Time Series Analysis, Nonlinear and Random Dynamical Systems, Markov chains, Graph Theory, and Coding and Information Theory.

5.1.2 Transfer operator analysis with applications to fluid mixing.

A transfer operator is a linear operator that completely describes the evolution of probability densities of a nonlinear dynamical system. Transfer operators are therefore fundamental objects like discrete-time maps and continuous time flows, but operate on ensembles rather than single points. Spectral techniques using transfer operators have recently been shown to be particularly effective for analysing complex dynamics in a variety of theoretical and physical systems, and are an active research area internationally. This project will focus on developing powerful transfer operator techniques to extract important geometric and probabilistic dynamical structures from fluid-like models. If desired, application areas include the ocean (an incompressible fluid) and the atmosphere (a compressible fluid).

5.1.3 Extreme value statistics for chaotic systems.

Accurately estimating the probability of rare events is particularly challenging in models with long memory, such as systems with a high level of determinism and a low level of randomness. This project will develop mathematical theory and accurate, rigorous numerical schemes to handle such systems. The project will also apply these new methods to estimate the likelihood of rare events from real data. The project will use mathematics from probability and statistics, functional analysis, and connects to dynamical systems and ergodic theory.

5.1.4 Lagrangian coherent structures in haemodynamics

Haemodynamics (the dynamics of blood flow) is believed to be a crucial factor in aneurysm formation, evolution, and eventual rupture. Turbulent motion near the artery wall can weaken already damaged arteries, as can oscillations between turbulent and laminar flow. Simulations of 3D blood flow is either derived by (i) computational fluid dynamics (CFD) from patient-specific mathematical models obtained from angiographic images or (ii) laser scanning of real flow through a patient-specific physical plastic/gel cast. In this project, joint with A/Prof. Tracie Barber (UNSW Mech. and Manufact. Engineering), you will apply the latest mathematical techniques for flow analysis, based on dynamical systems and elliptic PDEs to separate and track regions of turbulent and regular blood flow. A/Prof. Barber will provide the realistic flow data from her laboratory, from both CFD simulations and physical casts. There is also the opportunity to further develop mathematical theory to solve problems specific to haemodynamics.
5.2 Bruce Henry

5.2.1 Fractional calculus for fractals.

A fractal function such as the Mandelbrot-Weierstrass function is everywhere continuous but nowhere differentiable. However this function is fractionally differentiable. In this topic you will learn about fractional calculus and to what extent fractional calculus provides a calculus for fractals.

5.2.2 Random walks on discrete lattices.

A grasshopper jumps from one brick to another on a brick wall until it reaches a brick at the edge and then it is promptly squashed. If it starts in the middle of a brick wall that is one hundred bricks high what is the probability that it is squashed at the edge brick that is eleventh from the top? This is an example of a random walk problem on the triangular lattice. In this project you will be solving the random walk problem on other lattices.

5.2.3 Statistical mechanics of small particle systems.

The fundamental postulate of equilibrium statistical mechanics is that in an isolated system all parts of the energy surface are equally probable states. But the phase space trajectories for most isolated systems with just a few particles do not visit all regions of their energy surface with equal frequency. They hang around in some regions for a long time and hardly ever visit other regions. In this project you will use perturbation methods to find the regions that are visited most frequently and you will then use this information to determine statistical mechanical properties of small systems.

5.3 John Roberts

5.3.1 Algebraic dynamics.

The topic is broadly taken to be the intersection of algebra, number theory, and dynamical systems. This interdisciplinary area of research is cutting edge and exciting, and has important applications to, e.g., cryptography, random matrix theory, materials science and engineering.

5.3.2 Discrete integrable systems.

The study of integrable (partial) difference equations and integrable maps is presently a very active field of research. In the first instance, this is due to the increasingly numerous areas of physics in which such systems feature. The study of discrete integrable systems also has intrinsic mathematical appeal, broadly speaking to do with finding analogues of concepts or properties (e.g., the Painlevé property, Lax pairs, Hamiltonian structure) that exist in integrable systems with continuous time.

5.4 Wolfgang Schief

5.4.1 Topics in soliton theory.

Solitons constitute essentially localised nonlinear waves with remarkable novel interaction properties. The soliton represents one of the most intriguing of phenomena in modern physics and occurs in such diverse areas as nonlinear optics and relativity theory, plasma and solid state physics, as well as hydrodynamics. It has proven to have important technological applications in optical fibre communication systems and Josephson junction superconducting devices.
Nonlinear equations which describe solitonic phenomena ("soliton equations" or "integrable systems") are ubiquitous and of great mathematical interest. They are privileged in that they are amenable to a variety of solution generation techniques. Thus, in particular, they generically admit invariance under symmetry transformations known as Bäcklund transformations and have associated nonlinear superposition principles (permutability theorems) whereby analytic expressions descriptive of multi-soliton interaction may be constructed. Integrable systems appear in a variety of guises such as ordinary and partial differential equations, difference and differential-difference equations, cellular automata and convergence acceleration algorithms.

It is by now well established that there exist deep and far-reaching connections between integrable systems and classical differential geometry. For instance, the interaction properties of solitons observed in 1953 by Seeger, Donth and Kochendörfer in the context of Frenkel and Kontorovas dislocation theory, and later rediscovered by Zabusky and Kruskal (1965) in connection with the numerical treatment of the important Fermi-Pasta-Ulam problem, are encoded in the geometry of particular classes of surfaces governed by the sine-Gordon equation and Korteweg-de Vries (KdV) equation respectively. The geometric study of integrable systems has proven to be very profitable to both soliton theory and differential geometry.

Integrable systems play an important role in discrete differential geometry. The term “discrete differential geometry” reflects the interaction of differential geometry (of curves, surfaces or, in general, manifolds) and discrete geometry (of, for instance, polytopes and simplicial complexes). This relatively new and active research area is located between pure and applied mathematics and is concerned with a variety of problems in such disciplines as mathematics, physics, computer science and even architectural modelling. Specifically, theoretical and applied areas such as differential, discrete, and algebraic geometry, variational calculus, approximation theory, computational geometry, computer graphics, geometric processing and the theory of elasticity should be mentioned.

Soliton theory constitutes a rich source of Honours topics which range from applied to pure. Specific topics will be tailored towards the preferences, skills and knowledge of any individual student.

5.5 Chris Tisdell

5.5.1 A deeper understanding of discrete and continuous systems through analysis on time scales.

Historically, two of the most important types of mathematical equations that have been used to mathematically describe various dynamic processes are: differential and integral equations; and difference and summation equations, which model phenomena, respectively: in continuous time; or in discrete time. Traditionally, researchers have used either differential and integral equations or difference and summation equations — but not a combination of the two areas — to describe dynamic models. However, it is now becoming apparent that certain phenomena do not involve solely continuous aspects or solely discrete aspects. Rather, they feature elements of both the continuous and the discrete. These types of hybrid processes are seen, for example, in population dynamics where non-overlapping generations occur. Furthermore, neither difference equations nor differential equations give a good description of most population growth. To effectively treat hybrid dynamical systems, a more modern and flexible mathematical framework is needed to accurately model continuous, discrete processes in a mutually consistent manner. An emerging area that has the potential to effectively manage the above situations is the field of dynamic equations on time scales. Created by Hilger in 1990, this new and compelling area of mathematics is more general and versatile than the traditional theories of differential and difference equations, and appears to be the way forward in the quest for accurate and flexible mathematical models. In fact, the field of dynamic equations on time scales contains
and extends the classical theory of differential, difference, integral and summation equations as special cases. This project will perform an analysis of dynamic equations on time scales. It will uncover important qualitative and quantitative information about solutions; and the modelling possibilities. Students who undertake this project will be very well equipped to make contributions to this area of research.

5.5.2 Advanced Studies in differential equations.

Many problems in nonlinear differential equations can be reduced to the study of the set of solutions of an equation of the form \(f(x) = p \) in an appropriate space. This project will give the student an introduction to the applications of analysis to nonlinear differential equations. We will answer such questions as:

- When do these equations have solutions?
- What are the properties of the solution(s)?
- How can we approximate the solution(s)?

A student who completes this project will be well-prepared to make the transition to research studies in related fields.

5.5.3 Advanced studies in nonlinear difference equations.

Difference equations are of huge importance in modelling discrete phenomena and their solutions can possess a richer structure than those of analogous differential equations. This project will involve an investigation of nonlinear difference equations and the properties of their solutions (existence, multiplicity, boundedness, etc). Students who complete this project will be very well-equipped to contribute to the research field.

6 Optimisation

6.1 Gary Froyland

6.1.1 Topics in integer programming and combinatorial optimisation.

Integer programming is a mathematical framework for solving large decision problems. Usually there is some underlying discrete structure for the problem such as a network or graph. You will learn new mathematical techniques in discrete mathematics, algebra, and geometry. If desired, application areas may include public or private transport modes in urban environments, medical imaging, scheduling airlines, rail, or mining processes.

6.1.2 Stochastic integer programming.

Almost all real world models have significant uncertainty in their measured data. A naive approach is to replace probability distributions of data with their mean value and create a single deterministic model. However, optimising this deterministic model typically results in decisions that are far from optimal. In order to make better decisions, the underlying probability distributions must be properly incorporated into the optimisation process. This is the aim of stochastic programming. The aim of this project is to develop rigorous optimization methods that include uncertainties in the forecast data and evaluate all possible options in light of the latest information. Familiarity with probability theory is essential. If desired, application areas may include scheduling airlines, rail, traffic, or mining processes.
6.1.3 Nonlinear and mixed integer linear optimization with application to radiotherapy.

The clinical aim of this project is to reduce imaging dose, or alternatively improve image quality, in radiotherapy treatments for lung cancer when imaging the thorax or upper abdomen using a technique known as four dimensional cone beam computed tomography. For the same image quality, we aim to reduce imaging dose by at least 50%. The mathematical component of this project involves scheduling of the 4D cone beams, taking into account a variety of geometric constraints, so as to achieve a good combination of image quality and imaging dose, and will require mathematical research in nonlinear, integer linear, and possibly integer nonlinear, optimization. (Part of a Cancer Australia Priority-driven Collaborative Cancer Research Scheme, Investigators: R. O’Brien (Medicine - Radiation Physics, USydney), G. Froyland (Mathematics, UNSW), and J.-J. Sonke (Netherlands Cancer Institute): “Reducing Thoracic Imaging Dose and Improving Image Quality in Radiotherapy Treatments”

6.1.4 Optimising fluid mixing.

Combining techniques from dynamical systems and optimisation, this project aims to develop new mathematical algorithms and practical strategies for enhancing or controlling mixing in fluids, with applications in environmental (e.g. biology or pollution) and industrial settings. The project will use mathematics from optimisation, dynamical systems, functional analysis, and probability.

6.2 Vaithilingam Jeyakumar

6.2.1 Multi-objective Optimization under Data Uncertainty.

Multi-objective optimization is the process of simultaneously optimizing two or more conflicting objectives subject to constraints. It is central to making complex management and technical decisions in industry, commerce and scientific disciplines, where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting objectives. Traditional multi-objective optimization techniques assume perfect information (that is, accurate values for the input quantities or system parameters), despite the reality that such precise knowledge is rarely available in practice for real-world multi-objective optimization problems. The data of real-world multi-objective optimization problems more often than not are uncertain (that is, they are not known exactly at the time of the decision) due to estimation errors, prediction errors or lack of information.

The project will examine various mathematical principles and approaches to identifying and locating uncertainty immunized solutions of multi-objective optimization problems in the face of data uncertainty. Application areas may include multi-objective optimization problems in finance such as portfolio management problems under data uncertainty.

6.2.2 Robust optimization and data mining.

In many real world problems, the data associated with the underlying optimization problem are often uncertain due to modelling errors. Various techniques, such as stochastic programming and scenario optimization, have been developed to address these optimization problems under uncertainty. Robust optimization, which is based on a description of uncertainty by sets, instead of probability distributions, is emerging as a powerful methodology to examine uncertain optimization problems. This project will examine various robust optimization approaches to solving uncertain optimization problems. Application areas may include data mining and machine learning.
6.2.3 Semi-algebraic geometry and polynomial optimization.

What has algebraic geometry to do with optimization? The answer is: quite a lot. And all this is due to innovative ideas and links discovered in the last decade between pure and applied mathematics. A good understanding of convex sets in algebraic geometry will lead to insights into solving hard optimization problems involving polynomials. This project will examine emerging applications of algebraic geometry to optimization over polynomials.

6.2.4 Semi-Algebraic Optimization and Diffusion Tensor Imaging

The aim of this project is to examine nonlinear optimization models that arise in imaging sciences. A specific aim is to apply semi-algebraic optimization approaches to improve image quality in higher-order diffusion tensor imaging (DTI). It is a recently developed variation of magnetic resonance imaging for examining the microstructure of fibrous nerve and muscle tissue and it now allows scientists and clinicians to examine the brain in ways they hadn’t been able to before. DTI is used, for example, to demonstrate subtle abnormalities in a variety of diseases including stroke, multiple sclerosis, dyslexia, and schizophrenia.

In DTI, a higher-order tensor provides a mathematical tool to model and analyze the complex multi-relational clinical data. A higher-order tensor is a multi-dimensional generalization of a matrix in linear algebra to multi-way arrays. Multi-extremal semi-algebraic optimization, particularly, polynomial optimization, has proved to be a powerful methodology for higher-order DTI. The project will use mathematics from multi-linear algebra, semi-algebraic geometry, tensors and polynomial optimization.

6.3 Guoyin Li

6.3.1 Rank optimisation problem.

Notions such as order, complexity, or dimensionality can often be expressed by means of the rank of an appropriate matrix. Therefore, many practical problems can be modelled as rank optimisation problems with matrix variables. Typical examples include the matrix completion problem, minimum-order linear system realisation problem and image compression. The rank optimisation problem can be regarded as an extension of the celebrated compress sensing problem, and is often hard to analyse. One of the major difficulties in solving the rank optimisation problem is the non-smoothness and non-convexity of the rank function. In this project, we will first examine the fundamental mathematical aspects of rank functions using tools from non-smooth optimisation. We will then develop computationally efficient techniques for solving rank optimisation problems. Finally, we will apply these results to solve important problems such as the matrix completion problem and the minimum-order linear system realisation problem.

6.3.2 Optimisation approaches for tensor eigenvalue problems: modern techniques for multi-relational data analysis.

Modern data analysis is the science of correctly collecting data, assessing it for trustworthiness, extracting qualitative information from it, and presenting it in a comprehensible informative way. Traditional techniques in data analysis deal with single-relational data despite the reality that multi-relational data, whose objects have interactions among themselves based on different relations, often appear in our daily life. Examples include: researchers citing other researchers in different conferences based on different concepts and topics; papers citing other papers based on text analysis such as title, abstract, keyword and authorship; web-pages linking to other web-pages through different semantic meanings; a social network where objects are connected via multiple relations, by their organisational structure and communication protocols; biological
database where laboratory experiments are carried out to understand the interactions between each individual genes and proteins in a living cell.

Mathematically, single-relational data can be modelled by a matrix. Likewise, multi-relational data can be modelled as a tensor, which is a multidimensional extension of the concept of a matrix. Solving tensor eigenvalue-eigenvector problems enable us to identify and rank the most significant factors from complex and huge-scale multi-relational data, and to express them in a way to highlight similarities and differences. In this project, we will first study the fundamental mathematical aspects of the spectral (eigenvalue) theory of tensors. We will then develop computationally efficient techniques for solving tensor eigenvalue problems using optimisation techniques. Finally, we will apply these results to problems arise in modern decision-making and image science.

6.3.3 Nonconvex polynomial optimisation.

Many real-world problems can be modelled as non-convex polynomial optimisation problems. Due to the non-convex nature of the problem, most of the current techniques in optimisation can only find a local solution which is a relative optimiser around a given reference point. How to find a truly best solution (global optimiser) of a non-convex optimisation problem is, in general, theoretically hard and computationally challenging. In this project, we will first examine the fundamental mathematical principle for identifying a global optimiser for classes of non-convex polynomial optimisation problems. We will then develop computationally efficient techniques for locating these global optimisers. Finally, we will apply these results to solve important problems arise in engineering applications such as the sensor network localisation problem.