MATH2089
NUMERICAL METHODS
and
STATISTICS

Course Outline

SEMESTER 2, 2014
Course information

- 6 UOC
- Prerequisites: MATH1231 or MATH1241 or MATH1251
- Exclusions: BEES2041, BIOS2041, CVEN2002, CVEN2025, CVEN2702, ECON2215, MATH2049, MATH2099, MATH2301, MATH2801, MATH2829, MATH2839, MATH2841, MATH2859, MATH2899, MATH2901, MINE2700
- MATH2089 is only available to students for whom it is specifically required as part of their program.

Course structure

This course consists of two components – one on Numerical Methods and one on Statistics. Each component has two hours of lectures and one tutorial class per week. In each component the tutorials alternate (as detailed below) between being held in the Red Centre computer labs and being held in a tutorial classroom.

This course is administered by the School of Mathematics and Statistics.

Course staff

The course lecturers are
- Dr. Shev MacNamara (Numerical Methods)
 RC-6107, phone 9385-7077, email s.macnamara@unsw.edu.au
- Dr. Gery Geenens (Statistics)
 RC-2053, phone 9385-7032, email g.geenens@unsw.edu.au

Consultation times will be announced in lectures and on the course web page.

You will also be assigned a tutor for the Numerical Methods tutorials and a tutor for the Statistics tutorials. They should be your first point of contact for any questions about this course. A record of your attendance at tutorials will be kept – it is your responsibility to ensure this has been recorded.

Location and Times

- Lectures
 o Wednesday 11 – 13 CLB7 (Statistics) Weeks 1-12
 o Thursday 14 – 16 CLB7 (Numerical Methods) Weeks 1-12

- Tutorials
 Numerical Methods component
 - Laboratory class (RC-G012), Weeks 1, 2, 4, 6, 8, 10, 12
 - Tutorial class, Weeks 3, 5, 7, 9, 11, 13
 Statistics component
 - Introduction to Computing Labs and Matlab (RC-G012, Week 1)
 - Laboratory class (RC-G012), Weeks 1, 2, 4, 6, 8
 - Tutorial class, Weeks 3, 5, 7, 9, 11, 12, 13

Note that in Week 1, there is the introductory computer laboratory held in your statistics tutorial time. Before your introductory computer laboratory in Week 1 you should make sure you can logon to the computers in the Red Centre ground floor computing laboratory (RC-G012) using your zID (UNSW User ID) and zPass. You can activate or unlock your zPass using the UNSW Identity Manager. If you are having difficulties please go to the Computing Centre helpdesk on the mezzanine level of the Red Centre.
Course Web Site

The MATH2089 course web site will be available through UNSW Moodle

http://moodle.telt.unsw.edu.au/

UNSW Moodle is accessed using your zID and zPass.

You should check the course web site regularly for new and updated information.

Announcements

Announcements may be made in lectures or through the course web site.

Course description

This course gives an introduction to numerical methods and statistics essential in a wide range of engineering disciplines.

- **Numerical methods**: Computing with real numbers. Numerical differentiation, integration, interpolation and curve fitting (regression analysis). Solution of linear and nonlinear algebraic equations. Matrix operations and applications to solution of systems of linear equations, elimination and tridiagonal matrix algorithms. Introduction to numerical solution of ordinary and partial differential equations

- **Statistics**: Exploratory data analysis. Probability and distribution theory including the Binomial, Poisson and Normal distributions. Large sample theory including the Central Limit Theorem. Elements of statistical inference including estimation, confidence intervals and hypothesis testing. One sample and two-sample t-tests and F-tests. Simple linear regression and analysis of variance.

In each component, applications will be drawn from a variety of engineering disciplines. Matlab will be used extensively as a practical tool for both numerical and statistical computations and to illustrate theoretical concepts.

Expected Learning Outcomes

The **Numerical Methods** component will enable you to understand how mathematical models of problems arising in Engineering (and other areas) can be solved numerically. At the end of this course you will be able to

- identify risks associated with floating point computations
- demonstrate a basic knowledge of the techniques for accurate and efficient solution of models based on linear and nonlinear systems of equations, ordinary differential equations and partial differential equations.
- apply these techniques to practical problems in Engineering.
- use Matlab for the implementation and application of numerical methods and the visualization of results.

The **Statistics** component will enable you to understand the various ways in which random variation arises in engineering contexts and to develop facility at:

- applying various graphical and data analysis methods for summarising and understanding data;
• applying various statistical models and methods for drawing conclusions and making
decisions under uncertainty in engineering contexts;
• applying Matlab for graphical and statistical analysis.

We believe that effective learning is best supported by a climate of inquiry, in which students are
actively engaged in the learning process. Hence this course is structured with a strong emphasis on problem-solving tasks in lectures, in tutorials and laboratories, and in assessment
tasks. Students are expected to devote the majority of their class and study time to the solving of
such tasks.

New ideas and skills are first introduced and demonstrated in lectures, and then students
develop these skills by applying them to specific tasks in tutorials and assessments. Computing
skills are developed and practiced in regular computer laboratory sessions.

This course has a major focus on research, inquiry and analytical thinking as well as information
literacy. We will also explore capacity and motivation for intellectual development through the
solution of both simple and complex mathematical models of problems arising in engineering,
and the interpretation and communication of the results.

Course Evaluation and Development

The School of Mathematics evaluates each course each time it is run. Feedback on the course
is gathered, using among other means, UNSW's Course and Teaching Evaluation and
Improvement (CATEI) Process. Student feedback is taken seriously, and continual
improvements are made to the course based in part on such feedback. Past comments have
highlighted the critical importance of gaining competence in Matlab as early as possible. To this
end the online self paced Matlab tutorials have been completely updated.

In the past few years we have trialled on-line quizzes in MATH2089 to encourage consistent
engagement with the course. Students found these very helpful. This session we are using five
on-line quizzes in the course: three for the Statistics component and two for the Numerical
Methods component. The purpose of these is primarily to try to keep you up to date with the
material being covered and to provide feedback on how you are progressing. Thus their weight
in each component of the course is just 6%.

Assessment

The final grade in MATH2089 will be based on the sum of the marks from each of the Numerical
Methods and Statistics components. For each component (Statistics/Numerical Methods) the
mark is made up as

• on-line Matlab quizzes due in Week 2 (4%)
• on-line quizzes during session (2+2+2=6% for Statistics, 3+3=6% for Numerical
 Methods)
• mid-session test (20%)
• Matlab laboratory test (10%)
• final exam (60%)

Note that your mark from the Matlab on-line quizzes due in Week 2 is a mark for each of the
Numerical Methods and Statistics components.

Final grades may be adjusted by scaling with the approval of the appropriate departmental
meeting.
You cannot pass this course unless you have achieved a mark of at least 40 in both the
Statistics and Numerical Methods components. If you do not get at least 40 in each
component, you will receive the grade UF - Unsatisfactory Fail*, even though your overall course mark may be greater than 50. You will still be entitled to sit the concessional additional assessment exam if your final mark is 40 or above. See the School of Mathematics and Statistics Website for detailed assessment policies.

*The grade UF is awarded if there is unsatisfactory performance in an essential component of the course.

Examples

- You get 60 in the Statistics component and 40 in the Numerical Methods component, averaging 50, which is a pass.
- You get 35 in the Statistics component and 65 in the Numerical Methods component, averaging 50. As the mark for the Statistics component is less than 40, your final grade would be UF, but you can sit the concessional additional assessment.
- You get 55 in the Statistics component and 23 in the Numerical Methods component, averaging 39 which is your final mark, and you are not entitled to sit the concessional additional assessment.

Rationale for assessment: The on-line quizzes and class tests will give students regular opportunities to get feedback on their progress and mastery of the material.

Details of the material to be assessed in each mid-session test will be made available in the couple of weeks before the test. Note that students must sit the test in the tutorial in which they are enrolled unless they have prior written approval from the lecturer. Students who are unable to attend for a test must give a medical certificate to the lecturer. There will be no opportunity to resit a test.

Many practical problems require use of a computer software package, and in this course students are required to become familiar with Matlab. The Matlab part of MATH2089 is assessed in the following ways:

- **On-line quizzes due for completion in Week 2**, covering material in the Matlab self-paced on-line tutorial. The marks you obtain for the Matlab on-line quizzes are split equally between the Statistics and the Numerical Methods components.
- **Matlab class test to be held in the computer laboratory in Week 10**. The Matlab class test has a Statistics part and a Numerical Methods part.

You will be required to arrange a time to do your Matlab laboratory test through the School of Mathematics and Statistics’ ‘Student Web Portal’, to which there will be a link on UNSW Moodle. Further details of the MATLAB test will be made available on UNSW Moodle and in lectures closer to the time. Students are advised to arrange the time for the Matlab laboratory test as soon as possible (once available, after the mid-session break) as there are limited places available at each time. Students who are unable to attend for the test at the time at which they have booked must give a medical certificate to the lecturer. There will be no opportunity to resit the test.

On-line quizzes will be administered through UNSW Moodle and MapleTA. Here are some guidelines you should follow when taking each quiz:

- For the Matlab on-line quizzes due in Week 2 you are allowed as many attempts as you want. Your best mark will count.
- For the Statistics and Numerical Methods on-line quizzes, you are allowed a maximum of 3 attempts.
- Once you begin an attempt at a quiz, you have a fixed time to finish that attempt.
- You should only start an attempt at a quiz if you plan to finish it in that sitting.
- Once you answer a question, select Save Answer. You will still be allowed to modify your response. Selecting Finish submits your responses to MapleTA which cannot be changed.
• Do not close MapleTA or your web browser during a quiz. You will not be able to continue that attempt the next time you login.
• It is expected that you work on each quiz alone.

Because of the Matlab laboratory test in Week 10, your regular Statistics computer lab will not be held that week and your regular Numerical Methods lab will not be held that week.

Finally, the final exam will assess student understanding of the material covered in the lectures, tutorials and laboratory classes.

Help with the course

Your lecturer will have regular consultation times which will be advertised in lectures and on UNSW Moodle. There will also be additional regular consultation times advertised with other members of the school. At these times you are welcome to just turn up! For other consultation times, please email your lecturer for an appointment.
MATH2089 Tutorial and Assessment Schedules for Semester 2, 2014

<table>
<thead>
<tr>
<th>Week Beginning</th>
<th>Statistics (Stats)</th>
<th>Numerical Methods (NM)</th>
<th>On-line quizzes¹</th>
<th>Class Tests</th>
<th>Stats weight</th>
<th>NM weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1 July 28</td>
<td>Computer Lab</td>
<td>Computer Lab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 2 Aug 4</td>
<td>Computer Lab</td>
<td>Computer Lab</td>
<td>Matlab</td>
<td></td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Week 3 Aug 11</td>
<td>Tutorial</td>
<td>Tutorial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 4 Aug 18</td>
<td>Computer Lab</td>
<td>Computer Lab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 5 Aug 25</td>
<td>Tutorial</td>
<td>Tutorial</td>
<td>Stats</td>
<td></td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>Week 6 Sept 1</td>
<td>Computer Lab</td>
<td>Computer Lab</td>
<td>NM</td>
<td></td>
<td></td>
<td>3%</td>
</tr>
<tr>
<td>Week 7 Sept 8</td>
<td>Test in tutorial</td>
<td>Test in tutorial</td>
<td>Stats mid-session test</td>
<td>In tutorial</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>Week 8 Sept 15</td>
<td>Computer Lab</td>
<td>Computer Lab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 9 Sept 22</td>
<td>Tutorial</td>
<td>Tutorial</td>
<td>Stats</td>
<td></td>
<td>2%</td>
<td></td>
</tr>
</tbody>
</table>

| Mid-session Break |

<table>
<thead>
<tr>
<th>Week 10 Oct 6</th>
<th>Monday holiday</th>
<th>-</th>
<th>-</th>
<th>Matlab test</th>
<th>In laboratory (Book time)</th>
<th>10%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 11 Oct 13</td>
<td>Tutorial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 12 Oct 20</td>
<td>Tutorial</td>
<td></td>
<td></td>
<td>Stats & NM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 13 Oct 27</td>
<td>Tutorial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total in Session	40%	40%	
Exam period Nov 1 – Nov 22	3 hour exam covering both Statistics and Numerical Methods	60%	60%
Total for each component	100%	100%	

¹Online quizzes are due by **2pm on the Thursday** of the week specified.
Resources and Syllabus for Numerical Methods component

Recommended Text

The recommended text will be available in the High Use Collection in the Library.

Additional Reading

Lecture slides in PDF format will be made available via the UNSW Moodle web site. They are not a substitute for attendance at lectures. Other material, including data files for computer exercises, and solutions to tutorial exercises will also be available from the web site.

Recommended Internet sites

Syllabus and approximate schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Text Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Numbers, floating point arithmetic, errors; Efficiency – time, storage, Flops; Introduction to Matlab.</td>
<td>1.3 – 1.6</td>
</tr>
<tr>
<td>2</td>
<td>Polynomials, Horner’s method, Taylor polynomials, order notation, finite differences, Matlab functions.</td>
<td>7.3 – 7.6</td>
</tr>
<tr>
<td>3</td>
<td>Nonlinear equations: bisection method, fixed point iteration, Newton-Raphson and secant methods</td>
<td>2.3 – 2.6, 2.14</td>
</tr>
<tr>
<td>4</td>
<td>Systems of linear equations: vector and matrix norms, condition numbers, elimination methods, LU factorization</td>
<td>3.3 – 3.7</td>
</tr>
<tr>
<td>5</td>
<td>Special linear systems: symmetric, positive definite, sparse matrices</td>
<td>3.17</td>
</tr>
<tr>
<td>6</td>
<td>Eigenvalues and eigenvectors, orthogonal matrices, least squares</td>
<td>4.1 – 4.3</td>
</tr>
<tr>
<td>7</td>
<td>Curve fitting: interpolation and polynomial approximation</td>
<td>5.5 – 5.6, 5.8 – 5.10</td>
</tr>
<tr>
<td>8</td>
<td>Numerical integration</td>
<td>8.1 – 8.12</td>
</tr>
<tr>
<td>9</td>
<td>ODEs: Euler’s method, Predictor-corrector methods</td>
<td>9.5 – 9.6, 9.10</td>
</tr>
<tr>
<td>10</td>
<td>ODEs: Runge-Kutta methods. Boundary value problems</td>
<td>9.7, 10.5 – 10.6</td>
</tr>
<tr>
<td>11</td>
<td>PDEs: Parabolic equations. Methods of solution</td>
<td>11.5</td>
</tr>
<tr>
<td>12</td>
<td>PDEs: Elliptic and hyperbolic equations. Methods of solution</td>
<td>11.4 – 11.5, 11.9</td>
</tr>
</tbody>
</table>
Resources and Syllabus for Statistics component

Recommended Text

Additional Reading

Basically any text with “Statistics” and “Engineers” in its title. A quite comprehensive reference is

Lecture slides in PDF format will be made available via the UNSW Moodle web site. They are not a substitute for attendance at lectures. Other material, including data files for computer exercises, and solutions to tutorial exercises will also be available from the web site.

Syllabus and approximate schedule

Note that this syllabus is intentionally only approximate. Some variations will definitely occur as some topics require more time than others.

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Text Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Presentation and Introduction</td>
<td>1.1</td>
</tr>
<tr>
<td>2</td>
<td>Descriptive Statistics</td>
<td>1.2, 1.3, 2.1, 2.2, 2.3</td>
</tr>
<tr>
<td>3</td>
<td>Elements of Probability</td>
<td>5.1, 5.2, 5.3</td>
</tr>
<tr>
<td>4</td>
<td>Random Variables</td>
<td>5.4</td>
</tr>
<tr>
<td>5</td>
<td>Special discrete and continuous probability distributions</td>
<td>1.5, 1.6</td>
</tr>
<tr>
<td>6</td>
<td>The Normal distribution. Sampling distributions.</td>
<td>1.4, 5.5, 5.6</td>
</tr>
<tr>
<td>7</td>
<td>Inferences concerning a mean (confidence intervals) (I)</td>
<td>7.1, 7.2</td>
</tr>
<tr>
<td>8</td>
<td>Inferences concerning a mean (confidence intervals) (II)</td>
<td>7.4</td>
</tr>
<tr>
<td>9</td>
<td>Hypothesis testing</td>
<td>8.1, 8.2</td>
</tr>
<tr>
<td>10</td>
<td>Inferences for proportions, variances, differences in means</td>
<td>7.3, 7.5, 8.3</td>
</tr>
<tr>
<td>11</td>
<td>Regression analysis</td>
<td>11.1, 11.2, 11.3, 11.4, 11.5, 11.6</td>
</tr>
<tr>
<td>12</td>
<td>Analysis of Variance</td>
<td>Chapter 9</td>
</tr>
</tbody>
</table>
Matlab software
Matlab R2013b is available on the computers in the School of Mathematics and Statistics computer laboratories on the mezzanine level and ground floor of the Red Centre.

Information about how to obtain Matlab is available through the UNSW Moodle.

Matlab References

- School of Mathematics and Statistics, *Introduction to MATLAB*, 2013 (in the Course Pack and available through the course web site).
- School of Mathematics and Statistics, *Statistics using MATLAB (SUM)* (available through the course web site).

Library

- The library has a mathematics and statistics subject guide on the web which is a good starting point for mathematical and statistical information. They are at http://info.library.unsw.edu.au/ and http://subjectguides.library.unsw.edu.au

Additional Assessment

- The School of Mathematics has a strict policy on additional assessment. It can also be found through the School of Mathematics and Statistics student services page http://www.maths.unsw.edu.au/currentstudents/student-services

Plagiarism and academic integrity

- Plagiarism is the presentation of thoughts or work of another as one’s own, Issues you must be aware of regarding plagiarism and the university’s policies on academic integrity can be found at http://www.lc.unsw.edu.au/plagiarism and http://www.lc.unsw.edu.au/plagiarism/plagiarism_STUDENTBOOK.pdf

Academic Misconduct

- The University of New South Wales has rules relating to Academic Misconduct. See https://my.unsw.edu.au/student/academiclife/assessment/AcademicMisconduct.html

Rules for the Conduct of Examinations

- The University of New South Wales has rules for the conduct of examinations. See https://my.unsw.edu.au/student/academiclife/assessment/examinations/examinationrules.htm

Occupational Health and Safety

Equity and Disability

- Those students who have a disability that requires some adjustment in their teaching or learning environment are encouraged to discuss their study needs with the course convener prior to, or at the commencement of, their course, or with the Student Equity and Disabilities Unit (9385 4734 or http://www.studentequity.unsw.edu.au/). Issues to be discussed may include access to materials, signers or note-takers, the provision of services and additional exam and assessment arrangements. Early notification is essential to enable any necessary adjustments to be made.